Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem15 Structured version   Visualization version   GIF version

Theorem paddasslem15 39828
Description: Lemma for paddass 39832. Use elpaddn0 39794 to eliminate 𝑦 and 𝑧 from paddasslem14 39827. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem15 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem15
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2r 1234 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑟 ∈ (𝑌 + 𝑍))
2 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝐾 ∈ HL)
32hllatd 39357 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝐾 ∈ Lat)
4 simpl22 1253 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑌𝐴)
5 simpl23 1254 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑍𝐴)
6 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))
7 paddasslem.l . . . . 5 = (le‘𝐾)
8 paddasslem.j . . . . 5 = (join‘𝐾)
9 paddasslem.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 paddasslem.p . . . . 5 + = (+𝑃𝐾)
117, 8, 9, 10elpaddn0 39794 . . . 4 (((𝐾 ∈ Lat ∧ 𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) → (𝑟 ∈ (𝑌 + 𝑍) ↔ (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧))))
123, 4, 5, 6, 11syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟 ∈ (𝑌 + 𝑍) ↔ (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧))))
131, 12mpbid 232 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧)))
14 simp11 1204 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝐾 ∈ HL)
15 simp12 1205 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑋𝐴𝑌𝐴𝑍𝐴))
16 simp21 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝𝐴)
17 simp31 1210 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑟𝐴)
1816, 17jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑝𝐴𝑟𝐴))
19 simp22l 1293 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑥𝑋)
20 simp32l 1299 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑦𝑌)
21 simp32r 1300 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑧𝑍)
2219, 20, 213jca 1128 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑥𝑋𝑦𝑌𝑧𝑍))
23 simp23 1209 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 (𝑥 𝑟))
24 simp33 1212 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑟 (𝑦 𝑧))
2523, 24jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))
267, 8, 9, 10paddasslem14 39827 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2714, 15, 18, 22, 25, 26syl32anc 1380 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
28273expia 1121 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → ((𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
29283expd 1354 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟𝐴 → ((𝑦𝑌𝑧𝑍) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3029imp 406 . . . 4 ((((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) ∧ 𝑟𝐴) → ((𝑦𝑌𝑧𝑍) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
3130rexlimdvv 3193 . . 3 ((((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) ∧ 𝑟𝐴) → (∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3231expimpd 453 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → ((𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3313, 32mpd 15 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343  +𝑃cpadd 39789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-padd 39790
This theorem is referenced by:  paddasslem16  39829
  Copyright terms: Public domain W3C validator