Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem15 Structured version   Visualization version   GIF version

Theorem paddasslem15 37410
Description: Lemma for paddass 37414. Use elpaddn0 37376 to eliminate 𝑦 and 𝑧 from paddasslem14 37409. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem15 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem15
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2r 1230 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑟 ∈ (𝑌 + 𝑍))
2 simpl1 1188 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝐾 ∈ HL)
32hllatd 36940 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝐾 ∈ Lat)
4 simpl22 1249 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑌𝐴)
5 simpl23 1250 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑍𝐴)
6 simpl3 1190 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))
7 paddasslem.l . . . . 5 = (le‘𝐾)
8 paddasslem.j . . . . 5 = (join‘𝐾)
9 paddasslem.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 paddasslem.p . . . . 5 + = (+𝑃𝐾)
117, 8, 9, 10elpaddn0 37376 . . . 4 (((𝐾 ∈ Lat ∧ 𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) → (𝑟 ∈ (𝑌 + 𝑍) ↔ (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧))))
123, 4, 5, 6, 11syl31anc 1370 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟 ∈ (𝑌 + 𝑍) ↔ (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧))))
131, 12mpbid 235 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧)))
14 simp11 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝐾 ∈ HL)
15 simp12 1201 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑋𝐴𝑌𝐴𝑍𝐴))
16 simp21 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝𝐴)
17 simp31 1206 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑟𝐴)
1816, 17jca 515 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑝𝐴𝑟𝐴))
19 simp22l 1289 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑥𝑋)
20 simp32l 1295 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑦𝑌)
21 simp32r 1296 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑧𝑍)
2219, 20, 213jca 1125 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑥𝑋𝑦𝑌𝑧𝑍))
23 simp23 1205 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 (𝑥 𝑟))
24 simp33 1208 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑟 (𝑦 𝑧))
2523, 24jca 515 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))
267, 8, 9, 10paddasslem14 37409 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2714, 15, 18, 22, 25, 26syl32anc 1375 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
28273expia 1118 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → ((𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
29283expd 1350 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟𝐴 → ((𝑦𝑌𝑧𝑍) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3029imp 410 . . . 4 ((((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) ∧ 𝑟𝐴) → ((𝑦𝑌𝑧𝑍) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
3130rexlimdvv 3217 . . 3 ((((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) ∧ 𝑟𝐴) → (∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3231expimpd 457 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → ((𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3313, 32mpd 15 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wrex 3071  wss 3858  c0 4225   class class class wbr 5032  cfv 6335  (class class class)co 7150  lecple 16630  joincjn 17620  Latclat 17721  Atomscatm 36839  HLchlt 36926  +𝑃cpadd 37371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-proset 17604  df-poset 17622  df-plt 17634  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-lat 17722  df-clat 17784  df-oposet 36752  df-ol 36754  df-oml 36755  df-covers 36842  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927  df-padd 37372
This theorem is referenced by:  paddasslem16  37411
  Copyright terms: Public domain W3C validator