![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antll 725 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: poxp2 8131 sqrmo 15202 icodiamlt 15386 psgnunilem2 19404 haust1 23076 cnhaus 23078 isreg2 23101 llynlly 23201 restnlly 23206 llyrest 23209 llyidm 23212 nllyidm 23213 cldllycmp 23219 txlly 23360 txnlly 23361 pthaus 23362 txhaus 23371 txkgen 23376 xkohaus 23377 xkococnlem 23383 hauspwpwf1 23711 itg2add 25509 ulmdvlem3 26150 nosupno 27442 noinfno 27457 etasslt 27551 scutbdaybnd 27553 scutbdaybnd2 27554 addsproplem6 27696 negsproplem6 27746 mulsproplem13 27823 mulsproplem14 27824 mulsprop 27825 ax5seglem6 28459 fusgrfis 28854 umgr2wlkon 29471 numclwwlk5 29908 connpconn 34524 cvmliftmolem2 34571 cvmlift2lem10 34601 cvmlift3lem2 34609 cvmlift3lem8 34615 broutsideof3 35402 unblimceq0 35686 paddasslem10 39003 lhpexle2lem 39183 lhpexle3lem 39185 cdlemj3 39997 cdlemkid4 40108 mpaaeu 42194 stoweidlem35 45049 stoweidlem56 45070 stoweidlem59 45073 |
Copyright terms: Public domain | W3C validator |