Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-3an 1087 |
This theorem is referenced by: sqrmo 14660 icodiamlt 14844 psgnunilem2 18691 haust1 22053 cnhaus 22055 isreg2 22078 llynlly 22178 restnlly 22183 llyrest 22186 llyidm 22189 nllyidm 22190 cldllycmp 22196 txlly 22337 txnlly 22338 pthaus 22339 txhaus 22348 txkgen 22353 xkohaus 22354 xkococnlem 22360 hauspwpwf1 22688 itg2add 24460 ulmdvlem3 25097 ax5seglem6 26828 fusgrfis 27220 umgr2wlkon 27836 numclwwlk5 28273 connpconn 32714 cvmliftmolem2 32761 cvmlift2lem10 32791 cvmlift3lem2 32799 cvmlift3lem8 32805 poxp2 33346 nosupno 33472 noinfno 33487 etasslt 33569 scutbdaybnd 33571 scutbdaybnd2 33572 broutsideof3 33978 unblimceq0 34237 paddasslem10 37406 lhpexle2lem 37586 lhpexle3lem 37588 cdlemj3 38400 cdlemkid4 38511 mpaaeu 40468 stoweidlem35 43044 stoweidlem56 43065 stoweidlem59 43068 |
Copyright terms: Public domain | W3C validator |