![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: poxp2 8166 sqrmo 15286 icodiamlt 15470 psgnunilem2 19527 haust1 23375 cnhaus 23377 isreg2 23400 llynlly 23500 restnlly 23505 llyrest 23508 llyidm 23511 nllyidm 23512 cldllycmp 23518 txlly 23659 txnlly 23660 pthaus 23661 txhaus 23670 txkgen 23675 xkohaus 23676 xkococnlem 23682 hauspwpwf1 24010 itg2add 25808 ulmdvlem3 26459 nosupno 27762 noinfno 27777 etasslt 27872 scutbdaybnd 27874 scutbdaybnd2 27875 addsproplem6 28021 negsproplem6 28079 mulsproplem13 28168 mulsproplem14 28169 mulsprop 28170 ax5seglem6 28963 fusgrfis 29361 umgr2wlkon 29979 numclwwlk5 30416 connpconn 35219 cvmliftmolem2 35266 cvmlift2lem10 35296 cvmlift3lem2 35304 cvmlift3lem8 35310 broutsideof3 36107 unblimceq0 36489 paddasslem10 39811 lhpexle2lem 39991 lhpexle3lem 39993 cdlemj3 40805 cdlemkid4 40916 mpaaeu 43138 stoweidlem35 45990 stoweidlem56 46011 stoweidlem59 46014 |
Copyright terms: Public domain | W3C validator |