| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8079 sqrmo 15160 icodiamlt 15347 psgnunilem2 19409 haust1 23268 cnhaus 23270 isreg2 23293 llynlly 23393 restnlly 23398 llyrest 23401 llyidm 23404 nllyidm 23405 cldllycmp 23411 txlly 23552 txnlly 23553 pthaus 23554 txhaus 23563 txkgen 23568 xkohaus 23569 xkococnlem 23575 hauspwpwf1 23903 itg2add 25688 ulmdvlem3 26339 nosupno 27643 noinfno 27658 etasslt 27755 scutbdaybnd 27757 scutbdaybnd2 27758 addsproplem6 27918 negsproplem6 27976 mulsproplem13 28068 mulsproplem14 28069 mulsprop 28070 ax5seglem6 28914 fusgrfis 29310 umgr2wlkon 29930 numclwwlk5 30370 connpconn 35300 cvmliftmolem2 35347 cvmlift2lem10 35377 cvmlift3lem2 35385 cvmlift3lem8 35391 broutsideof3 36191 unblimceq0 36572 paddasslem10 39948 lhpexle2lem 40128 lhpexle3lem 40130 cdlemj3 40942 cdlemkid4 41053 mpaaeu 43267 stoweidlem35 46157 stoweidlem56 46178 stoweidlem59 46181 2arwcat 49725 |
| Copyright terms: Public domain | W3C validator |