| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8142 sqrmo 15270 icodiamlt 15454 psgnunilem2 19476 haust1 23290 cnhaus 23292 isreg2 23315 llynlly 23415 restnlly 23420 llyrest 23423 llyidm 23426 nllyidm 23427 cldllycmp 23433 txlly 23574 txnlly 23575 pthaus 23576 txhaus 23585 txkgen 23590 xkohaus 23591 xkococnlem 23597 hauspwpwf1 23925 itg2add 25712 ulmdvlem3 26363 nosupno 27667 noinfno 27682 etasslt 27777 scutbdaybnd 27779 scutbdaybnd2 27780 addsproplem6 27933 negsproplem6 27991 mulsproplem13 28083 mulsproplem14 28084 mulsprop 28085 ax5seglem6 28913 fusgrfis 29309 umgr2wlkon 29932 numclwwlk5 30369 connpconn 35257 cvmliftmolem2 35304 cvmlift2lem10 35334 cvmlift3lem2 35342 cvmlift3lem8 35348 broutsideof3 36144 unblimceq0 36525 paddasslem10 39848 lhpexle2lem 40028 lhpexle3lem 40030 cdlemj3 40842 cdlemkid4 40953 mpaaeu 43174 stoweidlem35 46064 stoweidlem56 46085 stoweidlem59 46088 2arwcat 49477 |
| Copyright terms: Public domain | W3C validator |