| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 sqrmo 15224 icodiamlt 15411 psgnunilem2 19432 haust1 23246 cnhaus 23248 isreg2 23271 llynlly 23371 restnlly 23376 llyrest 23379 llyidm 23382 nllyidm 23383 cldllycmp 23389 txlly 23530 txnlly 23531 pthaus 23532 txhaus 23541 txkgen 23546 xkohaus 23547 xkococnlem 23553 hauspwpwf1 23881 itg2add 25667 ulmdvlem3 26318 nosupno 27622 noinfno 27637 etasslt 27732 scutbdaybnd 27734 scutbdaybnd2 27735 addsproplem6 27888 negsproplem6 27946 mulsproplem13 28038 mulsproplem14 28039 mulsprop 28040 ax5seglem6 28868 fusgrfis 29264 umgr2wlkon 29887 numclwwlk5 30324 connpconn 35229 cvmliftmolem2 35276 cvmlift2lem10 35306 cvmlift3lem2 35314 cvmlift3lem8 35320 broutsideof3 36121 unblimceq0 36502 paddasslem10 39830 lhpexle2lem 40010 lhpexle3lem 40012 cdlemj3 40824 cdlemkid4 40935 mpaaeu 43146 stoweidlem35 46040 stoweidlem56 46061 stoweidlem59 46064 2arwcat 49593 |
| Copyright terms: Public domain | W3C validator |