| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8083 sqrmo 15176 icodiamlt 15363 psgnunilem2 19392 haust1 23255 cnhaus 23257 isreg2 23280 llynlly 23380 restnlly 23385 llyrest 23388 llyidm 23391 nllyidm 23392 cldllycmp 23398 txlly 23539 txnlly 23540 pthaus 23541 txhaus 23550 txkgen 23555 xkohaus 23556 xkococnlem 23562 hauspwpwf1 23890 itg2add 25676 ulmdvlem3 26327 nosupno 27631 noinfno 27646 etasslt 27742 scutbdaybnd 27744 scutbdaybnd2 27745 addsproplem6 27904 negsproplem6 27962 mulsproplem13 28054 mulsproplem14 28055 mulsprop 28056 ax5seglem6 28897 fusgrfis 29293 umgr2wlkon 29913 numclwwlk5 30350 connpconn 35207 cvmliftmolem2 35254 cvmlift2lem10 35284 cvmlift3lem2 35292 cvmlift3lem8 35298 broutsideof3 36099 unblimceq0 36480 paddasslem10 39808 lhpexle2lem 39988 lhpexle3lem 39990 cdlemj3 40802 cdlemkid4 40913 mpaaeu 43123 stoweidlem35 46017 stoweidlem56 46038 stoweidlem59 46041 2arwcat 49586 |
| Copyright terms: Public domain | W3C validator |