| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr1 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr1 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8073 sqrmo 15155 icodiamlt 15342 psgnunilem2 19405 haust1 23265 cnhaus 23267 isreg2 23290 llynlly 23390 restnlly 23395 llyrest 23398 llyidm 23401 nllyidm 23402 cldllycmp 23408 txlly 23549 txnlly 23550 pthaus 23551 txhaus 23560 txkgen 23565 xkohaus 23566 xkococnlem 23572 hauspwpwf1 23900 itg2add 25685 ulmdvlem3 26336 nosupno 27640 noinfno 27655 etasslt 27752 scutbdaybnd 27754 scutbdaybnd2 27755 addsproplem6 27915 negsproplem6 27973 mulsproplem13 28065 mulsproplem14 28066 mulsprop 28067 ax5seglem6 28910 fusgrfis 29306 umgr2wlkon 29926 numclwwlk5 30363 connpconn 35267 cvmliftmolem2 35314 cvmlift2lem10 35344 cvmlift3lem2 35352 cvmlift3lem8 35358 broutsideof3 36159 unblimceq0 36540 paddasslem10 39867 lhpexle2lem 40047 lhpexle3lem 40049 cdlemj3 40861 cdlemkid4 40972 mpaaeu 43182 stoweidlem35 46072 stoweidlem56 46093 stoweidlem59 46096 2arwcat 49631 |
| Copyright terms: Public domain | W3C validator |