MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk5 Structured version   Visualization version   GIF version

Theorem numclwwlk5 30350
Description: Statement 13 in [Huneke] p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.)
Hypothesis
Ref Expression
numclwwlk3.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)

Proof of Theorem numclwwlk5
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐺 RegUSGraph 𝐾)
2 simpr1 1195 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝑋𝑉)
3 numclwwlk3.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 29529 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
543adant2 1131 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
65adantl 481 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FinUSGraph)
7 simpr1 1195 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
8 ne0i 4294 . . . . . . . . . . 11 (𝑋𝑉𝑉 ≠ ∅)
98adantr 480 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝑉 ≠ ∅)
103frusgrnn0 29535 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
116, 7, 9, 10syl3anc 1373 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
1211ex 412 . . . . . . . 8 (𝑋𝑉 → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
13123ad2ant1 1133 . . . . . . 7 ((𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
1413impcom 407 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
151, 2, 143jca 1128 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0))
16 simpr3 1197 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 2 ∥ (𝐾 − 1))
173numclwwlk5lem 30349 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1))
1815, 16, 17sylc 65 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)
1918a1i 11 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1))
20 eleq1 2816 . . . . 5 (𝑃 = 2 → (𝑃 ∈ ℙ ↔ 2 ∈ ℙ))
21 breq1 5098 . . . . 5 (𝑃 = 2 → (𝑃 ∥ (𝐾 − 1) ↔ 2 ∥ (𝐾 − 1)))
2220, 213anbi23d 1441 . . . 4 (𝑃 = 2 → ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))))
2322anbi2d 630 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ↔ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)))))
24 oveq2 7361 . . . . . 6 (𝑃 = 2 → (𝑋(ClWWalksNOn‘𝐺)𝑃) = (𝑋(ClWWalksNOn‘𝐺)2))
2524fveq2d 6830 . . . . 5 (𝑃 = 2 → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)))
26 id 22 . . . . 5 (𝑃 = 2 → 𝑃 = 2)
2725, 26oveq12d 7371 . . . 4 (𝑃 = 2 → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2))
2827eqeq1d 2731 . . 3 (𝑃 = 2 → (((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1 ↔ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1))
2919, 23, 283imtr4d 294 . 2 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1))
30 3simpa 1148 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3130adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3231adantl 481 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
33 simprl3 1221 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑉 ∈ Fin)
34 simprr1 1222 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑋𝑉)
35 eldifsn 4740 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
36 oddprmge3 16629 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
3735, 36sylbir 235 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℤ‘3))
3837ex 412 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
39383ad2ant2 1134 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4039adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4140impcom 407 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑃 ∈ (ℤ‘3))
423numclwwlk3 30347 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑃 ∈ (ℤ‘3))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
4332, 33, 34, 41, 42syl13anc 1374 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
4443oveq1d 7368 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
45123ad2ant1 1133 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
4645impcom 407 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
4746nn0zd 12515 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
48 peano2zm 12536 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
49 zre 12493 . . . . . . . . 9 ((𝐾 − 1) ∈ ℤ → (𝐾 − 1) ∈ ℝ)
5047, 48, 493syl 18 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
51 simpl3 1194 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
523clwwlknonfin 30056 . . . . . . . . . 10 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)) ∈ Fin)
53 hashcl 14281 . . . . . . . . . 10 ((𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)) ∈ Fin → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℕ0)
5451, 52, 533syl 18 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℕ0)
5554nn0red 12464 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℝ)
5650, 55remulcld 11164 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ)
5746nn0red 12464 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℝ)
58 prmm2nn0 16627 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
59583ad2ant2 1134 . . . . . . . . 9 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 − 2) ∈ ℕ0)
6059adantl 481 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 − 2) ∈ ℕ0)
6157, 60reexpcld 14088 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾↑(𝑃 − 2)) ∈ ℝ)
62 prmnn 16603 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6362nnrpd 12953 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
64633ad2ant2 1134 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℝ+)
6564adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
6656, 61, 653jca 1128 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
6766adantl 481 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
68 modaddabs 13833 . . . . . 6 ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
6968eqcomd 2735 . . . . 5 ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
7067, 69syl 17 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
71623ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
7271adantl 481 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
73 nn0z 12514 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
7446, 73, 483syl 18 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
7554nn0zd 12515 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℤ)
7672, 74, 753jca 1128 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℤ))
77 simpr3 1197 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
78 mulmoddvds 16259 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) = 0))
7976, 77, 78sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) = 0)
80 simpr2 1196 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℙ)
8180, 47jca 511 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ))
82 powm2modprm 16733 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1))
8381, 77, 82sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1)
8479, 83oveq12d 7371 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) = (0 + 1))
8584oveq1d 7368 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
86 0p1e1 12263 . . . . . . . . . 10 (0 + 1) = 1
8786oveq1i 7363 . . . . . . . . 9 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
8862nnred 12161 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
89 prmgt1 16626 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
90 1mod 13825 . . . . . . . . . 10 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
9188, 89, 90syl2anc 584 . . . . . . . . 9 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
9287, 91eqtrid 2776 . . . . . . . 8 (𝑃 ∈ ℙ → ((0 + 1) mod 𝑃) = 1)
93923ad2ant2 1134 . . . . . . 7 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((0 + 1) mod 𝑃) = 1)
9493adantl 481 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
9585, 94eqtrd 2764 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
9695adantl 481 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
9744, 70, 963eqtrd 2768 . . 3 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
9897ex 412 . 2 (𝑃 ≠ 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1))
9929, 98pm2.61ine 3008 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3902  c0 4286  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365  cn 12146  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cuz 12753  +crp 12911   mod cmo 13791  cexp 13986  chash 14255  cdvds 16181  cprime 16600  Vtxcvtx 28959  FinUSGraphcfusgr 29279   RegUSGraph crusgr 29520  ClWWalksNOncclwwlknon 30049   FriendGraph cfrgr 30220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-xadd 13033  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-s2 14773  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-prm 16601  df-phi 16695  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-ushgr 29022  df-upgr 29045  df-umgr 29046  df-uspgr 29113  df-usgr 29114  df-fusgr 29280  df-nbgr 29296  df-vtxdg 29430  df-rgr 29521  df-rusgr 29522  df-wwlks 29793  df-wwlksn 29794  df-wwlksnon 29795  df-clwwlk 29944  df-clwwlkn 29987  df-clwwlknon 30050  df-frgr 30221
This theorem is referenced by:  numclwwlk6  30352
  Copyright terms: Public domain W3C validator