Proof of Theorem numclwwlk5
Step | Hyp | Ref
| Expression |
1 | | simpl1 1188 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1))) →
𝐺 RegUSGraph 𝐾) |
2 | | simpr1 1191 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1))) →
𝑋 ∈ 𝑉) |
3 | | numclwwlk3.v |
. . . . . . . . . . . . 13
⊢ 𝑉 = (Vtx‘𝐺) |
4 | 3 | finrusgrfusgr 27468 |
. . . . . . . . . . . 12
⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
5 | 4 | 3adant2 1128 |
. . . . . . . . . . 11
⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
6 | 5 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FinUSGraph) |
7 | | simpr1 1191 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾) |
8 | | ne0i 4235 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝑉 → 𝑉 ≠ ∅) |
9 | 8 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝑉 ≠ ∅) |
10 | 3 | frusgrnn0 27474 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈
ℕ0) |
11 | 6, 7, 9, 10 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐾 ∈
ℕ0) |
12 | 11 | ex 416 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈
ℕ0)) |
13 | 12 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1)) →
((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈
ℕ0)) |
14 | 13 | impcom 411 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1))) →
𝐾 ∈
ℕ0) |
15 | 1, 2, 14 | 3jca 1125 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1))) →
(𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈
ℕ0)) |
16 | | simpr3 1193 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1))) → 2
∥ (𝐾 −
1)) |
17 | 3 | numclwwlk5lem 28285 |
. . . . 5
⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2
∥ (𝐾 − 1)
→ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
18 | 15, 16, 17 | sylc 65 |
. . . 4
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1))) →
((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1) |
19 | 18 | a1i 11 |
. . 3
⊢ (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 − 1))) →
((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
20 | | eleq1 2839 |
. . . . 5
⊢ (𝑃 = 2 → (𝑃 ∈ ℙ ↔ 2 ∈
ℙ)) |
21 | | breq1 5039 |
. . . . 5
⊢ (𝑃 = 2 → (𝑃 ∥ (𝐾 − 1) ↔ 2 ∥ (𝐾 − 1))) |
22 | 20, 21 | 3anbi23d 1436 |
. . . 4
⊢ (𝑃 = 2 → ((𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 −
1)))) |
23 | 22 | anbi2d 631 |
. . 3
⊢ (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ↔ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥
(𝐾 −
1))))) |
24 | | oveq2 7164 |
. . . . . 6
⊢ (𝑃 = 2 → (𝑋(ClWWalksNOn‘𝐺)𝑃) = (𝑋(ClWWalksNOn‘𝐺)2)) |
25 | 24 | fveq2d 6667 |
. . . . 5
⊢ (𝑃 = 2 →
(♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2))) |
26 | | id 22 |
. . . . 5
⊢ (𝑃 = 2 → 𝑃 = 2) |
27 | 25, 26 | oveq12d 7174 |
. . . 4
⊢ (𝑃 = 2 →
((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2)) |
28 | 27 | eqeq1d 2760 |
. . 3
⊢ (𝑃 = 2 →
(((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1 ↔ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) =
1)) |
29 | 19, 23, 28 | 3imtr4d 297 |
. 2
⊢ (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)) |
30 | | 3simpa 1145 |
. . . . . . . 8
⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph )) |
31 | 30 | adantr 484 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph )) |
32 | 31 | adantl 485 |
. . . . . 6
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph )) |
33 | | simprl3 1217 |
. . . . . 6
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑉 ∈ Fin) |
34 | | simprr1 1218 |
. . . . . 6
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑋 ∈ 𝑉) |
35 | | eldifsn 4680 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
↔ (𝑃 ∈ ℙ
∧ 𝑃 ≠
2)) |
36 | | oddprmge3 16110 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
(ℤ≥‘3)) |
37 | 35, 36 | sylbir 238 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈
(ℤ≥‘3)) |
38 | 37 | ex 416 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈
(ℤ≥‘3))) |
39 | 38 | 3ad2ant2 1131 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 ≠ 2 → 𝑃 ∈
(ℤ≥‘3))) |
40 | 39 | adantl 485 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ≠ 2 → 𝑃 ∈
(ℤ≥‘3))) |
41 | 40 | impcom 411 |
. . . . . 6
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑃 ∈
(ℤ≥‘3)) |
42 | 3 | numclwwlk3 28283 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑃 ∈ (ℤ≥‘3)))
→ (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2)))) |
43 | 32, 33, 34, 41, 42 | syl13anc 1369 |
. . . . 5
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2)))) |
44 | 43 | oveq1d 7171 |
. . . 4
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃)) |
45 | 12 | 3ad2ant1 1130 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈
ℕ0)) |
46 | 45 | impcom 411 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈
ℕ0) |
47 | 46 | nn0zd 12137 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ) |
48 | | peano2zm 12077 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
49 | | zre 12037 |
. . . . . . . . 9
⊢ ((𝐾 − 1) ∈ ℤ
→ (𝐾 − 1) ∈
ℝ) |
50 | 47, 48, 49 | 3syl 18 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℝ) |
51 | | simpl3 1190 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin) |
52 | 3 | clwwlknonfin 27992 |
. . . . . . . . . 10
⊢ (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)) ∈ Fin) |
53 | | hashcl 13780 |
. . . . . . . . . 10
⊢ ((𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)) ∈ Fin →
(♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈
ℕ0) |
54 | 51, 52, 53 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈
ℕ0) |
55 | 54 | nn0red 12008 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈
ℝ) |
56 | 50, 55 | remulcld 10722 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈
ℝ) |
57 | 46 | nn0red 12008 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℝ) |
58 | | prmm2nn0 16108 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → (𝑃 − 2) ∈
ℕ0) |
59 | 58 | 3ad2ant2 1131 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 − 2) ∈
ℕ0) |
60 | 59 | adantl 485 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 − 2) ∈
ℕ0) |
61 | 57, 60 | reexpcld 13590 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾↑(𝑃 − 2)) ∈
ℝ) |
62 | | prmnn 16084 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
63 | 62 | nnrpd 12483 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ+) |
64 | 63 | 3ad2ant2 1131 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈
ℝ+) |
65 | 64 | adantl 485 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈
ℝ+) |
66 | 56, 61, 65 | 3jca 1125 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈
ℝ+)) |
67 | 66 | adantl 485 |
. . . . 5
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈
ℝ+)) |
68 | | modaddabs 13339 |
. . . . . 6
⊢ ((((𝐾 − 1) ·
(♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+)
→ (((((𝐾 − 1)
· (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃)) |
69 | 68 | eqcomd 2764 |
. . . . 5
⊢ ((((𝐾 − 1) ·
(♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+)
→ ((((𝐾 − 1)
· (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃)) |
70 | 67, 69 | syl 17 |
. . . 4
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃)) |
71 | 62 | 3ad2ant2 1131 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ) |
72 | 71 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ) |
73 | | nn0z 12057 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℤ) |
74 | 46, 73, 48 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ) |
75 | 54 | nn0zd 12137 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈
ℤ) |
76 | 72, 74, 75 | 3jca 1125 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧
(♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈
ℤ)) |
77 | | simpr3 1193 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1)) |
78 | | mulmoddvds 15744 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧
(♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) = 0)) |
79 | 76, 77, 78 | sylc 65 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) = 0) |
80 | | simpr2 1192 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℙ) |
81 | 80, 47 | jca 515 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ)) |
82 | | powm2modprm 16209 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1)) |
83 | 81, 77, 82 | sylc 65 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1) |
84 | 79, 83 | oveq12d 7174 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) = (0 + 1)) |
85 | 84 | oveq1d 7171 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃)) |
86 | | 0p1e1 11809 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
87 | 86 | oveq1i 7166 |
. . . . . . . . 9
⊢ ((0 + 1)
mod 𝑃) = (1 mod 𝑃) |
88 | 62 | nnred 11702 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
89 | | prmgt1 16107 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
90 | | 1mod 13333 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℝ ∧ 1 <
𝑃) → (1 mod 𝑃) = 1) |
91 | 88, 89, 90 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → (1 mod
𝑃) = 1) |
92 | 87, 91 | syl5eq 2805 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → ((0 + 1)
mod 𝑃) =
1) |
93 | 92 | 3ad2ant2 1131 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((0 + 1) mod 𝑃) = 1) |
94 | 93 | adantl 485 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1) |
95 | 85, 94 | eqtrd 2793 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) |
96 | 95 | adantl 485 |
. . . 4
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) |
97 | 44, 70, 96 | 3eqtrd 2797 |
. . 3
⊢ ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1) |
98 | 97 | ex 416 |
. 2
⊢ (𝑃 ≠ 2 → (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)) |
99 | 29, 98 | pm2.61ine 3034 |
1
⊢ (((𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋 ∈ 𝑉 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1) |