MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk5 Structured version   Visualization version   GIF version

Theorem numclwwlk5 30417
Description: Statement 13 in [Huneke] p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.)
Hypothesis
Ref Expression
numclwwlk3.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
numclwwlk5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)

Proof of Theorem numclwwlk5
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐺 RegUSGraph 𝐾)
2 simpr1 1193 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝑋𝑉)
3 numclwwlk3.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 29598 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
543adant2 1130 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
65adantl 481 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FinUSGraph)
7 simpr1 1193 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
8 ne0i 4347 . . . . . . . . . . 11 (𝑋𝑉𝑉 ≠ ∅)
98adantr 480 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝑉 ≠ ∅)
103frusgrnn0 29604 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
116, 7, 9, 10syl3anc 1370 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
1211ex 412 . . . . . . . 8 (𝑋𝑉 → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
13123ad2ant1 1132 . . . . . . 7 ((𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
1413impcom 407 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
151, 2, 143jca 1127 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0))
16 simpr3 1195 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 2 ∥ (𝐾 − 1))
173numclwwlk5lem 30416 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1))
1815, 16, 17sylc 65 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)
1918a1i 11 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1))
20 eleq1 2827 . . . . 5 (𝑃 = 2 → (𝑃 ∈ ℙ ↔ 2 ∈ ℙ))
21 breq1 5151 . . . . 5 (𝑃 = 2 → (𝑃 ∥ (𝐾 − 1) ↔ 2 ∥ (𝐾 − 1)))
2220, 213anbi23d 1438 . . . 4 (𝑃 = 2 → ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))))
2322anbi2d 630 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ↔ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)))))
24 oveq2 7439 . . . . . 6 (𝑃 = 2 → (𝑋(ClWWalksNOn‘𝐺)𝑃) = (𝑋(ClWWalksNOn‘𝐺)2))
2524fveq2d 6911 . . . . 5 (𝑃 = 2 → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)))
26 id 22 . . . . 5 (𝑃 = 2 → 𝑃 = 2)
2725, 26oveq12d 7449 . . . 4 (𝑃 = 2 → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2))
2827eqeq1d 2737 . . 3 (𝑃 = 2 → (((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1 ↔ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1))
2919, 23, 283imtr4d 294 . 2 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1))
30 3simpa 1147 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3130adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3231adantl 481 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
33 simprl3 1219 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑉 ∈ Fin)
34 simprr1 1220 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑋𝑉)
35 eldifsn 4791 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
36 oddprmge3 16734 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
3735, 36sylbir 235 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℤ‘3))
3837ex 412 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
39383ad2ant2 1133 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4039adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4140impcom 407 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑃 ∈ (ℤ‘3))
423numclwwlk3 30414 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑃 ∈ (ℤ‘3))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
4332, 33, 34, 41, 42syl13anc 1371 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) = (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
4443oveq1d 7446 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
45123ad2ant1 1132 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
4645impcom 407 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
4746nn0zd 12637 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
48 peano2zm 12658 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
49 zre 12615 . . . . . . . . 9 ((𝐾 − 1) ∈ ℤ → (𝐾 − 1) ∈ ℝ)
5047, 48, 493syl 18 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
51 simpl3 1192 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
523clwwlknonfin 30123 . . . . . . . . . 10 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)) ∈ Fin)
53 hashcl 14392 . . . . . . . . . 10 ((𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)) ∈ Fin → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℕ0)
5451, 52, 533syl 18 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℕ0)
5554nn0red 12586 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℝ)
5650, 55remulcld 11289 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ)
5746nn0red 12586 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℝ)
58 prmm2nn0 16732 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
59583ad2ant2 1133 . . . . . . . . 9 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 − 2) ∈ ℕ0)
6059adantl 481 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 − 2) ∈ ℕ0)
6157, 60reexpcld 14200 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾↑(𝑃 − 2)) ∈ ℝ)
62 prmnn 16708 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6362nnrpd 13073 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
64633ad2ant2 1133 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℝ+)
6564adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
6656, 61, 653jca 1127 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
6766adantl 481 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
68 modaddabs 13946 . . . . . 6 ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
6968eqcomd 2741 . . . . 5 ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
7067, 69syl 17 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
71623ad2ant2 1133 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
7271adantl 481 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
73 nn0z 12636 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
7446, 73, 483syl 18 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
7554nn0zd 12637 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℤ)
7672, 74, 753jca 1127 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℤ))
77 simpr3 1195 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
78 mulmoddvds 16364 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2))) ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) = 0))
7976, 77, 78sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) = 0)
80 simpr2 1194 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℙ)
8180, 47jca 511 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ))
82 powm2modprm 16837 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1))
8381, 77, 82sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1)
8479, 83oveq12d 7449 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) = (0 + 1))
8584oveq1d 7446 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
86 0p1e1 12386 . . . . . . . . . 10 (0 + 1) = 1
8786oveq1i 7441 . . . . . . . . 9 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
8862nnred 12279 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
89 prmgt1 16731 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
90 1mod 13940 . . . . . . . . . 10 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
9188, 89, 90syl2anc 584 . . . . . . . . 9 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
9287, 91eqtrid 2787 . . . . . . . 8 (𝑃 ∈ ℙ → ((0 + 1) mod 𝑃) = 1)
93923ad2ant2 1133 . . . . . . 7 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((0 + 1) mod 𝑃) = 1)
9493adantl 481 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
9585, 94eqtrd 2775 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
9695adantl 481 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((((𝐾 − 1) · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
9744, 70, 963eqtrd 2779 . . 3 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
9897ex 412 . 2 (𝑃 ≠ 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1))
9929, 98pm2.61ine 3023 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)𝑃)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cdif 3960  c0 4339  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  Fincfn 8984  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490  cn 12264  2c2 12319  3c3 12320  0cn0 12524  cz 12611  cuz 12876  +crp 13032   mod cmo 13906  cexp 14099  chash 14366  cdvds 16287  cprime 16705  Vtxcvtx 29028  FinUSGraphcfusgr 29348   RegUSGraph crusgr 29589  ClWWalksNOncclwwlknon 30116   FriendGraph cfrgr 30287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-s2 14884  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-vtx 29030  df-iedg 29031  df-edg 29080  df-uhgr 29090  df-ushgr 29091  df-upgr 29114  df-umgr 29115  df-uspgr 29182  df-usgr 29183  df-fusgr 29349  df-nbgr 29365  df-vtxdg 29499  df-rgr 29590  df-rusgr 29591  df-wwlks 29860  df-wwlksn 29861  df-wwlksnon 29862  df-clwwlk 30011  df-clwwlkn 30054  df-clwwlknon 30117  df-frgr 30288
This theorem is referenced by:  numclwwlk6  30419
  Copyright terms: Public domain W3C validator