Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnouttr2 Structured version   Visualization version   GIF version

Theorem btwnouttr2 34415
Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
btwnouttr2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))

Proof of Theorem btwnouttr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp2l 1198 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp3l 1200 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
4 simp3r 1201 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
5 axsegcon 27525 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
61, 2, 3, 3, 4, 5syl122anc 1378 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
76adantr 481 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
8 simprrl 778 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐴, 𝑥⟩)
9 simprl1 1217 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐵𝐶)
10 simpl2 1191 . . . . . . . . . . . . 13 (((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
11 simprl 768 . . . . . . . . . . . . 13 (((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐶 Btwn ⟨𝐴, 𝑥⟩)
1210, 11jca 512 . . . . . . . . . . . 12 (((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩))
1312adantl 482 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩))
14 simpl1 1190 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
15 simpl2l 1225 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
16 simpl2r 1226 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
17 simpl3l 1227 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
18 simpr 485 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
19 btwnexch3 34413 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩))
2014, 15, 16, 17, 18, 19syl122anc 1378 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩))
2120adantr 481 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩))
2213, 21mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐵, 𝑥⟩)
23 simprrr 779 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
2422, 23jca 512 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
25 simprl3 1219 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐵, 𝐷⟩)
26 simpl3r 1228 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
2714, 17, 26cgrrflxd 34381 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)
2827adantr 481 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)
2925, 28jca 512 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩))
30 segconeq 34403 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷))
3114, 17, 17, 26, 16, 18, 26, 30syl133anc 1392 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷))
3231adantr 481 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ((𝐵𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷))
339, 24, 29, 32mp3and 1463 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝑥 = 𝐷)
3433opeq2d 4823 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝐷⟩)
358, 34breqtrd 5115 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)
3635expr 457 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → ((𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
3736an32s 649 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
3837rexlimdva 3148 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
397, 38mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)
4039ex 413 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wrex 3070  cop 4578   class class class wbr 5089  cfv 6473  cn 12066  𝔼cee 27486   Btwn cbtwn 27487  Cgrccgr 27488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-ico 13178  df-icc 13179  df-fz 13333  df-fzo 13476  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288  df-sum 15489  df-ee 27489  df-btwn 27490  df-cgr 27491  df-ofs 34376
This theorem is referenced by:  btwnexch2  34416  btwnouttr  34417  btwnoutside  34518  lineelsb2  34541
  Copyright terms: Public domain W3C validator