Step | Hyp | Ref
| Expression |
1 | | simp1 1137 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
2 | | simp2l 1200 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
3 | | simp3l 1202 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
4 | | simp3r 1203 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
5 | | axsegcon 27918 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) |
6 | 1, 2, 3, 3, 4, 5 | syl122anc 1380 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) |
7 | 6 | adantr 482 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) |
8 | | simprrl 780 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐴, 𝑥⟩) |
9 | | simprl1 1219 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐵 ≠ 𝐶) |
10 | | simpl2 1193 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩) |
11 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐶 Btwn ⟨𝐴, 𝑥⟩) |
12 | 10, 11 | jca 513 |
. . . . . . . . . . . 12
⊢ (((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩)) |
13 | 12 | adantl 483 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩)) |
14 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
15 | | simpl2l 1227 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
16 | | simpl2r 1228 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
17 | | simpl3l 1229 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
18 | | simpr 486 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁)) |
19 | | btwnexch3 34651 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩)) |
20 | 14, 15, 16, 17, 18, 19 | syl122anc 1380 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩)) |
21 | 20 | adantr 482 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩)) |
22 | 13, 21 | mpd 15 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐵, 𝑥⟩) |
23 | | simprrr 781 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) |
24 | 22, 23 | jca 513 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) |
25 | | simprl3 1221 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐵, 𝐷⟩) |
26 | | simpl3r 1230 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
27 | 14, 17, 26 | cgrrflxd 34619 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩) |
28 | 27 | adantr 482 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩) |
29 | 25, 28 | jca 513 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) |
30 | | segconeq 34641 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷)) |
31 | 14, 17, 17, 26, 16, 18, 26, 30 | syl133anc 1394 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 ≠ 𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷)) |
32 | 31 | adantr 482 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ((𝐵 ≠ 𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷)) |
33 | 9, 24, 29, 32 | mp3and 1465 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝑥 = 𝐷) |
34 | 33 | opeq2d 4838 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝐷⟩) |
35 | 8, 34 | breqtrd 5132 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐴, 𝐷⟩) |
36 | 35 | expr 458 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → ((𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)) |
37 | 36 | an32s 651 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)) |
38 | 37 | rexlimdva 3149 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)) |
39 | 7, 38 | mpd 15 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → 𝐶 Btwn ⟨𝐴, 𝐷⟩) |
40 | 39 | ex 414 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)) |