Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  midofsegid Structured version   Visualization version   GIF version

Theorem midofsegid 36068
Description: If two points fall in the same place in the middle of a segment, then they are identical. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
midofsegid ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) → 𝐷 = 𝐸))

Proof of Theorem midofsegid
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp2l 1199 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp3r 1202 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
4 simp3l 1201 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
5 simprr 772 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐷 Btwn ⟨𝐴, 𝐸⟩)) → 𝐷 Btwn ⟨𝐴, 𝐸⟩)
6 simprl3 1220 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐷 Btwn ⟨𝐴, 𝐸⟩)) → ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)
71, 2, 4, 2, 3, 6cgrcomand 35955 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐷 Btwn ⟨𝐴, 𝐸⟩)) → ⟨𝐴, 𝐸⟩Cgr⟨𝐴, 𝐷⟩)
81, 2, 3, 4, 5, 7endofsegidand 36050 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐷 Btwn ⟨𝐴, 𝐸⟩)) → 𝐸 = 𝐷)
98eqcomd 2746 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐷 Btwn ⟨𝐴, 𝐸⟩)) → 𝐷 = 𝐸)
109expr 456 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)) → (𝐷 Btwn ⟨𝐴, 𝐸⟩ → 𝐷 = 𝐸))
11 simprr 772 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐸 Btwn ⟨𝐴, 𝐷⟩)) → 𝐸 Btwn ⟨𝐴, 𝐷⟩)
12 simprl3 1220 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐸 Btwn ⟨𝐴, 𝐷⟩)) → ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)
131, 2, 4, 3, 11, 12endofsegidand 36050 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) ∧ 𝐸 Btwn ⟨𝐴, 𝐷⟩)) → 𝐷 = 𝐸)
1413expr 456 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)) → (𝐸 Btwn ⟨𝐴, 𝐷⟩ → 𝐷 = 𝐸))
15 3simpa 1148 . . . . 5 ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) → (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩))
1615adantl 481 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)) → (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩))
17 simp2r 1200 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
18 btwnconn3 36067 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩) → (𝐷 Btwn ⟨𝐴, 𝐸⟩ ∨ 𝐸 Btwn ⟨𝐴, 𝐷⟩)))
191, 2, 4, 3, 17, 18syl122anc 1379 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩) → (𝐷 Btwn ⟨𝐴, 𝐸⟩ ∨ 𝐸 Btwn ⟨𝐴, 𝐷⟩)))
2019adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)) → ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩) → (𝐷 Btwn ⟨𝐴, 𝐸⟩ ∨ 𝐸 Btwn ⟨𝐴, 𝐷⟩)))
2116, 20mpd 15 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)) → (𝐷 Btwn ⟨𝐴, 𝐸⟩ ∨ 𝐸 Btwn ⟨𝐴, 𝐷⟩))
2210, 14, 21mpjaod 859 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩)) → 𝐷 = 𝐸)
2322ex 412 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐵⟩ ∧ 𝐸 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐷⟩Cgr⟨𝐴, 𝐸⟩) → 𝐷 = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  cfv 6573  cn 12293  𝔼cee 28921   Btwn cbtwn 28922  Cgrccgr 28923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-ee 28924  df-btwn 28925  df-cgr 28926  df-ofs 35947  df-colinear 36003  df-ifs 36004  df-cgr3 36005  df-fs 36006
This theorem is referenced by:  outsideofeq  36094
  Copyright terms: Public domain W3C validator