Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vrid | Structured version Visualization version GIF version |
Description: Right identity law for the zero vector. (ax-hvaddid 29394 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vlid.a | ⊢ + = (+g‘𝑊) |
slmd0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vrid | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 31487 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmd0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmd0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | slmd0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | mndrid 18434 | . 2 ⊢ ((𝑊 ∈ Mnd ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 +gcplusg 16990 0gc0g 17178 Mndcmnd 18413 SLModcslmd 31481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fv 6455 df-riota 7252 df-ov 7298 df-0g 17180 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-cmn 19416 df-slmd 31482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |