Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vrid Structured version   Visualization version   GIF version

Theorem slmd0vrid 31504
Description: Right identity law for the zero vector. (ax-hvaddid 29394 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vlid.v 𝑉 = (Base‘𝑊)
slmd0vlid.a + = (+g𝑊)
slmd0vlid.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vrid ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)

Proof of Theorem slmd0vrid
StepHypRef Expression
1 slmdmnd 31487 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmd0vlid.v . . 3 𝑉 = (Base‘𝑊)
3 slmd0vlid.a . . 3 + = (+g𝑊)
4 slmd0vlid.z . . 3 0 = (0g𝑊)
52, 3, 4mndrid 18434 . 2 ((𝑊 ∈ Mnd ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)
61, 5sylan 579 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → (𝑋 + 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  cfv 6447  (class class class)co 7295  Basecbs 16940  +gcplusg 16990  0gc0g 17178  Mndcmnd 18413  SLModcslmd 31481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-iota 6399  df-fun 6449  df-fv 6455  df-riota 7252  df-ov 7298  df-0g 17180  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-cmn 19416  df-slmd 31482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator