Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vcl Structured version   Visualization version   GIF version

Theorem slmd0vcl 33190
Description: The zero vector is a vector. (ax-hv0cl 30983 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vcl.v 𝑉 = (Base‘𝑊)
slmd0vcl.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vcl (𝑊 ∈ SLMod → 0𝑉)

Proof of Theorem slmd0vcl
StepHypRef Expression
1 slmdmnd 33175 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmd0vcl.v . . 3 𝑉 = (Base‘𝑊)
3 slmd0vcl.z . . 3 0 = (0g𝑊)
42, 3mndidcl 18657 . 2 (𝑊 ∈ Mnd → 0𝑉)
51, 4syl 17 1 (𝑊 ∈ SLMod → 0𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  Basecbs 17120  0gc0g 17343  Mndcmnd 18642  SLModcslmd 33169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-cmn 19694  df-slmd 33170
This theorem is referenced by:  slmdvs0  33194
  Copyright terms: Public domain W3C validator