Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vcl Structured version   Visualization version   GIF version

Theorem slmd0vcl 33200
Description: The zero vector is a vector. (ax-hv0cl 31035 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vcl.v 𝑉 = (Base‘𝑊)
slmd0vcl.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vcl (𝑊 ∈ SLMod → 0𝑉)

Proof of Theorem slmd0vcl
StepHypRef Expression
1 slmdmnd 33185 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmd0vcl.v . . 3 𝑉 = (Base‘𝑊)
3 slmd0vcl.z . . 3 0 = (0g𝑊)
42, 3mndidcl 18787 . 2 (𝑊 ∈ Mnd → 0𝑉)
51, 4syl 17 1 (𝑊 ∈ SLMod → 0𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Basecbs 17258  0gc0g 17499  Mndcmnd 18772  SLModcslmd 33179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-cmn 19824  df-slmd 33180
This theorem is referenced by:  slmdvs0  33204
  Copyright terms: Public domain W3C validator