![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vcl | Structured version Visualization version GIF version |
Description: The zero vector is a vector. (ax-hv0cl 30251 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vcl.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vcl.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vcl | ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 32346 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmd0vcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmd0vcl.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
4 | 2, 3 | mndidcl 18639 | . 2 ⊢ (𝑊 ∈ Mnd → 0 ∈ 𝑉) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 Basecbs 17143 0gc0g 17384 Mndcmnd 18624 SLModcslmd 32340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7364 df-ov 7411 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-cmn 19649 df-slmd 32341 |
This theorem is referenced by: slmdvs0 32365 |
Copyright terms: Public domain | W3C validator |