Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vlid Structured version   Visualization version   GIF version

Theorem slmd0vlid 33181
Description: Left identity law for the zero vector. (hvaddlid 30958 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vlid.v 𝑉 = (Base‘𝑊)
slmd0vlid.a + = (+g𝑊)
slmd0vlid.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vlid ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)

Proof of Theorem slmd0vlid
StepHypRef Expression
1 slmdmnd 33165 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmd0vlid.v . . 3 𝑉 = (Base‘𝑊)
3 slmd0vlid.a . . 3 + = (+g𝑊)
4 slmd0vlid.z . . 3 0 = (0g𝑊)
52, 3, 4mndlid 18687 . 2 ((𝑊 ∈ Mnd ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
61, 5sylan 580 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  0gc0g 17408  Mndcmnd 18667  SLModcslmd 33159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-riota 7346  df-ov 7392  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-cmn 19718  df-slmd 33160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator