| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vlid | Structured version Visualization version GIF version | ||
| Description: Left identity law for the zero vector. (hvaddlid 30958 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| slmd0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
| slmd0vlid.a | ⊢ + = (+g‘𝑊) |
| slmd0vlid.z | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| slmd0vlid | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmdmnd 33165 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
| 2 | slmd0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | slmd0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
| 4 | slmd0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 5 | 2, 3, 4 | mndlid 18687 | . 2 ⊢ ((𝑊 ∈ Mnd ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 0gc0g 17408 Mndcmnd 18667 SLModcslmd 33159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-riota 7346 df-ov 7392 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-cmn 19718 df-slmd 33160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |