Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vlid | Structured version Visualization version GIF version |
Description: Left identity law for the zero vector. (hvaddid2 28905 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vlid.a | ⊢ + = (+g‘𝑊) |
slmd0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vlid | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 30985 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmd0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmd0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | slmd0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | mndlid 17997 | . 2 ⊢ ((𝑊 ∈ Mnd ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 583 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 0gc0g 16771 Mndcmnd 17977 SLModcslmd 30979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-riota 7108 df-ov 7153 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-cmn 18975 df-slmd 30980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |