![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vlid | Structured version Visualization version GIF version |
Description: Left identity law for the zero vector. (hvaddlid 30861 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vlid.a | ⊢ + = (+g‘𝑊) |
slmd0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vlid | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 32942 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmd0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmd0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | slmd0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | mndlid 18723 | . 2 ⊢ ((𝑊 ∈ Mnd ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 578 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 (class class class)co 7426 Basecbs 17189 +gcplusg 17242 0gc0g 17430 Mndcmnd 18703 SLModcslmd 32936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-riota 7382 df-ov 7429 df-0g 17432 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-cmn 19751 df-slmd 32937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |