![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > slmd0vlid | Structured version Visualization version GIF version |
Description: Left identity law for the zero vector. (hvaddlid 31068 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
slmd0vlid.v | ⊢ 𝑉 = (Base‘𝑊) |
slmd0vlid.a | ⊢ + = (+g‘𝑊) |
slmd0vlid.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
slmd0vlid | ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdmnd 33227 | . 2 ⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | |
2 | slmd0vlid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | slmd0vlid.a | . . 3 ⊢ + = (+g‘𝑊) | |
4 | slmd0vlid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | 2, 3, 4 | mndlid 18789 | . 2 ⊢ ((𝑊 ∈ Mnd ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 580 | 1 ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 +gcplusg 17307 0gc0g 17495 Mndcmnd 18769 SLModcslmd 33221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-riota 7395 df-ov 7441 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-cmn 19824 df-slmd 33222 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |