Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmd0vlid Structured version   Visualization version   GIF version

Theorem slmd0vlid 33167
Description: Left identity law for the zero vector. (hvaddlid 30970 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmd0vlid.v 𝑉 = (Base‘𝑊)
slmd0vlid.a + = (+g𝑊)
slmd0vlid.z 0 = (0g𝑊)
Assertion
Ref Expression
slmd0vlid ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)

Proof of Theorem slmd0vlid
StepHypRef Expression
1 slmdmnd 33151 . 2 (𝑊 ∈ SLMod → 𝑊 ∈ Mnd)
2 slmd0vlid.v . . 3 𝑉 = (Base‘𝑊)
3 slmd0vlid.a . . 3 + = (+g𝑊)
4 slmd0vlid.z . . 3 0 = (0g𝑊)
52, 3, 4mndlid 18736 . 2 ((𝑊 ∈ Mnd ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
61, 5sylan 580 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  0gc0g 17455  Mndcmnd 18716  SLModcslmd 33145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-riota 7370  df-ov 7416  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-cmn 19768  df-slmd 33146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator