| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version | ||
| Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexsng 4640 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-sn 4590 |
| This theorem is referenced by: elsnres 5992 oarec 8526 snec 8751 zornn0g 10458 fpwwe2lem12 10595 elreal 11084 hashge2el2difr 14446 vdwlem6 16957 pzriprnglem10 21400 pmatcollpw3fi1 22675 restsn 23057 snclseqg 24003 ust0 24107 0slt1s 27741 cuteq1 27746 made0 27785 cofcutr 27832 mulsrid 28016 n0scut 28226 n0sfincut 28246 zscut 28295 1p1e2s 28302 twocut 28309 halfcut 28333 addhalfcut 28334 grplsm0l 33374 rprmdvdsprod 33505 esum2dlem 34082 eulerpartlemgh 34369 eldm3 35748 poimirlem28 37642 heiborlem3 37807 tfsconcatrn 43331 nregmodel 45007 stgr1 47960 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |