| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version | ||
| Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexsng 4643 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-sn 4593 |
| This theorem is referenced by: elsnres 5995 oarec 8529 snec 8754 zornn0g 10465 fpwwe2lem12 10602 elreal 11091 hashge2el2difr 14453 vdwlem6 16964 pzriprnglem10 21407 pmatcollpw3fi1 22682 restsn 23064 snclseqg 24010 ust0 24114 0slt1s 27748 cuteq1 27753 made0 27792 cofcutr 27839 mulsrid 28023 n0scut 28233 n0sfincut 28253 zscut 28302 1p1e2s 28309 twocut 28316 halfcut 28340 addhalfcut 28341 grplsm0l 33381 rprmdvdsprod 33512 esum2dlem 34089 eulerpartlemgh 34376 eldm3 35755 poimirlem28 37649 heiborlem3 37814 tfsconcatrn 43338 nregmodel 45014 stgr1 47964 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |