| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version | ||
| Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexsng 4624 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-sn 4572 |
| This theorem is referenced by: elsnres 5965 oarec 8472 snec 8697 zornn0g 10391 fpwwe2lem12 10528 elreal 11017 hashge2el2difr 14383 vdwlem6 16893 pzriprnglem10 21422 pmatcollpw3fi1 22698 restsn 23080 snclseqg 24026 ust0 24130 0slt1s 27768 cuteq1 27773 made0 27813 cofcutr 27863 mulsrid 28047 n0scut 28257 n0sfincut 28277 zscut 28326 1p1e2s 28334 twocut 28341 halfcut 28373 addhalfcut 28374 pw2cut2 28377 grplsm0l 33360 rprmdvdsprod 33491 esum2dlem 34097 eulerpartlemgh 34383 eldm3 35797 poimirlem28 37688 heiborlem3 37853 tfsconcatrn 43375 nregmodel 45050 stgr1 47992 setc1onsubc 49634 |
| Copyright terms: Public domain | W3C validator |