| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version | ||
| Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexsng 4630 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3440 df-sn 4580 |
| This theorem is referenced by: elsnres 5976 oarec 8487 snec 8712 zornn0g 10418 fpwwe2lem12 10555 elreal 11044 hashge2el2difr 14407 vdwlem6 16917 pzriprnglem10 21416 pmatcollpw3fi1 22692 restsn 23074 snclseqg 24020 ust0 24124 0slt1s 27762 cuteq1 27767 made0 27806 cofcutr 27856 mulsrid 28040 n0scut 28250 n0sfincut 28270 zscut 28319 1p1e2s 28327 twocut 28334 halfcut 28365 addhalfcut 28366 grplsm0l 33359 rprmdvdsprod 33490 esum2dlem 34078 eulerpartlemgh 34365 eldm3 35753 poimirlem28 37647 heiborlem3 37812 tfsconcatrn 43335 nregmodel 45011 stgr1 47965 setc1onsubc 49607 |
| Copyright terms: Public domain | W3C validator |