| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version | ||
| Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexsng 4636 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-sn 4586 |
| This theorem is referenced by: elsnres 5981 oarec 8503 snec 8728 zornn0g 10434 fpwwe2lem12 10571 elreal 11060 hashge2el2difr 14422 vdwlem6 16933 pzriprnglem10 21376 pmatcollpw3fi1 22651 restsn 23033 snclseqg 23979 ust0 24083 0slt1s 27717 cuteq1 27722 made0 27761 cofcutr 27808 mulsrid 27992 n0scut 28202 n0sfincut 28222 zscut 28271 1p1e2s 28278 twocut 28285 halfcut 28309 addhalfcut 28310 grplsm0l 33347 rprmdvdsprod 33478 esum2dlem 34055 eulerpartlemgh 34342 eldm3 35721 poimirlem28 37615 heiborlem3 37780 tfsconcatrn 43304 nregmodel 44980 stgr1 47933 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |