Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version |
Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ralsn.1 | ⊢ 𝐴 ∈ V |
ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rexsng 4610 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-sn 4562 |
This theorem is referenced by: elsnres 5931 oarec 8393 snec 8569 zornn0g 10261 fpwwe2lem12 10398 elreal 10887 hashge2el2difr 14195 vdwlem6 16687 pmatcollpw3fi1 21937 restsn 22321 snclseqg 23267 ust0 23371 grplsm0l 31591 esum2dlem 32060 eulerpartlemgh 32345 eldm3 33728 0slt1s 34023 made0 34057 cofcutr 34092 poimirlem28 35805 heiborlem3 35971 |
Copyright terms: Public domain | W3C validator |