![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version |
Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ralsn.1 | ⊢ 𝐴 ∈ V |
ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rexsng 4680 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 Vcvv 3477 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-v 3479 df-sn 4631 |
This theorem is referenced by: elsnres 6040 oarec 8598 snec 8818 zornn0g 10542 fpwwe2lem12 10679 elreal 11168 hashge2el2difr 14516 vdwlem6 17019 pzriprnglem10 21518 pmatcollpw3fi1 22809 restsn 23193 snclseqg 24139 ust0 24243 0slt1s 27888 cuteq1 27892 made0 27926 cofcutr 27972 mulsrid 28153 n0scut 28352 zscut 28407 1p1e2s 28414 nohalf 28421 halfcut 28430 addhalfcut 28433 grplsm0l 33410 rprmdvdsprod 33541 esum2dlem 34072 eulerpartlemgh 34359 eldm3 35740 poimirlem28 37634 heiborlem3 37799 tfsconcatrn 43331 stgr1 47863 |
Copyright terms: Public domain | W3C validator |