| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version | ||
| Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexsng 4657 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-sn 4607 |
| This theorem is referenced by: elsnres 6013 oarec 8579 snec 8799 zornn0g 10524 fpwwe2lem12 10661 elreal 11150 hashge2el2difr 14504 vdwlem6 17011 pzriprnglem10 21456 pmatcollpw3fi1 22731 restsn 23113 snclseqg 24059 ust0 24163 0slt1s 27798 cuteq1 27803 made0 27842 cofcutr 27889 mulsrid 28073 n0scut 28283 n0sfincut 28303 zscut 28352 1p1e2s 28359 twocut 28366 halfcut 28390 addhalfcut 28391 grplsm0l 33423 rprmdvdsprod 33554 esum2dlem 34128 eulerpartlemgh 34415 eldm3 35783 poimirlem28 37677 heiborlem3 37842 tfsconcatrn 43333 stgr1 47940 setc1onsubc 49446 |
| Copyright terms: Public domain | W3C validator |