| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version | ||
| Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rexsng 4630 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-sn 4578 |
| This theorem is referenced by: elsnres 5977 oarec 8486 snec 8711 zornn0g 10407 fpwwe2lem12 10544 elreal 11033 hashge2el2difr 14395 vdwlem6 16905 pzriprnglem10 21436 pmatcollpw3fi1 22723 restsn 23105 snclseqg 24051 ust0 24155 0slt1s 27793 cuteq1 27798 made0 27838 cofcutr 27888 mulsrid 28072 n0scut 28282 n0sfincut 28302 zscut 28351 1p1e2s 28359 twocut 28366 halfcut 28398 addhalfcut 28399 pw2cut2 28402 domnprodeq0 33286 grplsm0l 33412 rprmdvdsprod 33543 esum2dlem 34177 eulerpartlemgh 34463 eldm3 35877 poimirlem28 37761 heiborlem3 37926 tfsconcatrn 43499 nregmodel 45174 stgr1 48123 setc1onsubc 49763 |
| Copyright terms: Public domain | W3C validator |