MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsn Structured version   Visualization version   GIF version

Theorem rexsn 4618
Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ralsn.1 𝐴 ∈ V
ralsn.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexsn (∃𝑥 ∈ {𝐴}𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsn
StepHypRef Expression
1 ralsn.1 . 2 𝐴 ∈ V
2 ralsn.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32rexsng 4610 . 2 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑𝜓))
41, 3ax-mp 5 1 (∃𝑥 ∈ {𝐴}𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-sn 4562
This theorem is referenced by:  elsnres  5931  oarec  8393  snec  8569  zornn0g  10261  fpwwe2lem12  10398  elreal  10887  hashge2el2difr  14195  vdwlem6  16687  pmatcollpw3fi1  21937  restsn  22321  snclseqg  23267  ust0  23371  grplsm0l  31591  esum2dlem  32060  eulerpartlemgh  32345  eldm3  33728  0slt1s  34023  made0  34057  cofcutr  34092  poimirlem28  35805  heiborlem3  35971
  Copyright terms: Public domain W3C validator