![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version |
Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ralsn.1 | ⊢ 𝐴 ∈ V |
ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rexsng 4698 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-sn 4649 |
This theorem is referenced by: elsnres 6050 oarec 8618 snec 8838 zornn0g 10574 fpwwe2lem12 10711 elreal 11200 hashge2el2difr 14530 vdwlem6 17033 pzriprnglem10 21524 pmatcollpw3fi1 22815 restsn 23199 snclseqg 24145 ust0 24249 0slt1s 27892 cuteq1 27896 made0 27930 cofcutr 27976 mulsrid 28157 n0scut 28356 zscut 28411 1p1e2s 28418 nohalf 28425 halfcut 28434 addhalfcut 28437 grplsm0l 33396 rprmdvdsprod 33527 esum2dlem 34056 eulerpartlemgh 34343 eldm3 35723 poimirlem28 37608 heiborlem3 37773 tfsconcatrn 43304 |
Copyright terms: Public domain | W3C validator |