Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexsn | Structured version Visualization version GIF version |
Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ralsn.1 | ⊢ 𝐴 ∈ V |
ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsn | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rexsng 4590 | . 2 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 {csn 4541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-sn 4542 |
This theorem is referenced by: elsnres 5891 oarec 8290 snec 8462 zornn0g 10119 fpwwe2lem12 10256 elreal 10745 hashge2el2difr 14047 vdwlem6 16539 pmatcollpw3fi1 21685 restsn 22067 snclseqg 23013 ust0 23117 grplsm0l 31305 esum2dlem 31772 eulerpartlemgh 32057 eldm3 33447 0slt1s 33760 made0 33794 cofcutr 33829 poimirlem28 35542 heiborlem3 35708 |
Copyright terms: Public domain | W3C validator |