| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprssspr | Structured version Visualization version GIF version | ||
| Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| Ref | Expression |
|---|---|
| sprssspr | ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprval 47603 | . . 3 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
| 2 | r2ex 3170 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏})) | |
| 3 | simpr 484 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏}) | |
| 4 | 3 | 2eximi 1837 | . . . . . . 7 ⊢ (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
| 5 | 2, 4 | sylbi 217 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
| 6 | 5 | ax-gen 1796 | . . . . 5 ⊢ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ V → ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) |
| 8 | ss2ab 4010 | . . . 4 ⊢ ({𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
| 10 | 1, 9 | eqsstrd 3965 | . 2 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
| 11 | fvprc 6820 | . . 3 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) = ∅) | |
| 12 | 0ss 4349 | . . . 4 ⊢ ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (¬ 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
| 14 | 11, 13 | eqsstrd 3965 | . 2 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
| 15 | 10, 14 | pm2.61i 182 | 1 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 {cpr 4577 ‘cfv 6486 Pairscspr 47601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-spr 47602 |
| This theorem is referenced by: spr0el 47606 |
| Copyright terms: Public domain | W3C validator |