Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprssspr | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprssspr | ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprval 44819 | . . 3 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
2 | r2ex 3231 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏})) | |
3 | simpr 484 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏}) | |
4 | 3 | 2eximi 1839 | . . . . . . 7 ⊢ (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
5 | 2, 4 | sylbi 216 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
6 | 5 | ax-gen 1799 | . . . . 5 ⊢ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ V → ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) |
8 | ss2ab 3989 | . . . 4 ⊢ ({𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
10 | 1, 9 | eqsstrd 3955 | . 2 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
11 | fvprc 6748 | . . 3 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) = ∅) | |
12 | 0ss 4327 | . . . 4 ⊢ ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
13 | 12 | a1i 11 | . . 3 ⊢ (¬ 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
14 | 11, 13 | eqsstrd 3955 | . 2 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
15 | 10, 14 | pm2.61i 182 | 1 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 {cpr 4560 ‘cfv 6418 Pairscspr 44817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-spr 44818 |
This theorem is referenced by: spr0el 44822 |
Copyright terms: Public domain | W3C validator |