Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprssspr Structured version   Visualization version   GIF version

Theorem sprssspr 47511
Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprssspr (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Distinct variable group:   𝑉,𝑎,𝑏,𝑝

Proof of Theorem sprssspr
StepHypRef Expression
1 sprval 47509 . . 3 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
2 r2ex 3169 . . . . . . 7 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}))
3 simpr 484 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏})
432eximi 1837 . . . . . . 7 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
52, 4sylbi 217 . . . . . 6 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
65ax-gen 1796 . . . . 5 𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
76a1i 11 . . . 4 (𝑉 ∈ V → ∀𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
8 ss2ab 4013 . . . 4 ({𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
97, 8sylibr 234 . . 3 (𝑉 ∈ V → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
101, 9eqsstrd 3969 . 2 (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
11 fvprc 6814 . . 3 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
12 0ss 4350 . . . 4 ∅ ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
1312a1i 11 . . 3 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
1411, 13eqsstrd 3969 . 2 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
1510, 14pm2.61i 182 1 (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  wss 3902  c0 4283  {cpr 4578  cfv 6481  Pairscspr 47507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-spr 47508
This theorem is referenced by:  spr0el  47512
  Copyright terms: Public domain W3C validator