Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprssspr | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprssspr | ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprval 44931 | . . 3 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
2 | r2ex 3232 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏})) | |
3 | simpr 485 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏}) | |
4 | 3 | 2eximi 1838 | . . . . . . 7 ⊢ (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
5 | 2, 4 | sylbi 216 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
6 | 5 | ax-gen 1798 | . . . . 5 ⊢ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ V → ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) |
8 | ss2ab 3993 | . . . 4 ⊢ ({𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
10 | 1, 9 | eqsstrd 3959 | . 2 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
11 | fvprc 6766 | . . 3 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) = ∅) | |
12 | 0ss 4330 | . . . 4 ⊢ ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
13 | 12 | a1i 11 | . . 3 ⊢ (¬ 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
14 | 11, 13 | eqsstrd 3959 | . 2 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
15 | 10, 14 | pm2.61i 182 | 1 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 {cpr 4563 ‘cfv 6433 Pairscspr 44929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-spr 44930 |
This theorem is referenced by: spr0el 44934 |
Copyright terms: Public domain | W3C validator |