![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprssspr | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprssspr | ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprval 46147 | . . 3 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
2 | r2ex 3196 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏})) | |
3 | simpr 486 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏}) | |
4 | 3 | 2eximi 1839 | . . . . . . 7 ⊢ (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
5 | 2, 4 | sylbi 216 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
6 | 5 | ax-gen 1798 | . . . . 5 ⊢ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ V → ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) |
8 | ss2ab 4057 | . . . 4 ⊢ ({𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) | |
9 | 7, 8 | sylibr 233 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
10 | 1, 9 | eqsstrd 4021 | . 2 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
11 | fvprc 6884 | . . 3 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) = ∅) | |
12 | 0ss 4397 | . . . 4 ⊢ ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
13 | 12 | a1i 11 | . . 3 ⊢ (¬ 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
14 | 11, 13 | eqsstrd 4021 | . 2 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
15 | 10, 14 | pm2.61i 182 | 1 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 ∅c0 4323 {cpr 4631 ‘cfv 6544 Pairscspr 46145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-spr 46146 |
This theorem is referenced by: spr0el 46150 |
Copyright terms: Public domain | W3C validator |