![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprssspr | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprssspr | ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprval 47404 | . . 3 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) | |
2 | r2ex 3194 | . . . . . . 7 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏})) | |
3 | simpr 484 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏}) | |
4 | 3 | 2eximi 1833 | . . . . . . 7 ⊢ (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
5 | 2, 4 | sylbi 217 | . . . . . 6 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
6 | 5 | ax-gen 1792 | . . . . 5 ⊢ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑉 ∈ V → ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) |
8 | ss2ab 4072 | . . . 4 ⊢ ({𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏})) | |
9 | 7, 8 | sylibr 234 | . . 3 ⊢ (𝑉 ∈ V → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
10 | 1, 9 | eqsstrd 4034 | . 2 ⊢ (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
11 | fvprc 6899 | . . 3 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) = ∅) | |
12 | 0ss 4406 | . . . 4 ⊢ ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | |
13 | 12 | a1i 11 | . . 3 ⊢ (¬ 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
14 | 11, 13 | eqsstrd 4034 | . 2 ⊢ (¬ 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}}) |
15 | 10, 14 | pm2.61i 182 | 1 ⊢ (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 {cpr 4633 ‘cfv 6563 Pairscspr 47402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-spr 47403 |
This theorem is referenced by: spr0el 47407 |
Copyright terms: Public domain | W3C validator |