Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprssspr Structured version   Visualization version   GIF version

Theorem sprssspr 47473
Description: The set of all unordered pairs over a given set 𝑉 is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprssspr (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Distinct variable group:   𝑉,𝑎,𝑏,𝑝

Proof of Theorem sprssspr
StepHypRef Expression
1 sprval 47471 . . 3 (𝑉 ∈ V → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
2 r2ex 3195 . . . . . . 7 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}))
3 simpr 484 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → 𝑝 = {𝑎, 𝑏})
432eximi 1835 . . . . . . 7 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑝 = {𝑎, 𝑏}) → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
52, 4sylbi 217 . . . . . 6 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
65ax-gen 1794 . . . . 5 𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
76a1i 11 . . . 4 (𝑉 ∈ V → ∀𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
8 ss2ab 4061 . . . 4 ({𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}} ↔ ∀𝑝(∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}))
97, 8sylibr 234 . . 3 (𝑉 ∈ V → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
101, 9eqsstrd 4017 . 2 (𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
11 fvprc 6897 . . 3 𝑉 ∈ V → (Pairs‘𝑉) = ∅)
12 0ss 4399 . . . 4 ∅ ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
1312a1i 11 . . 3 𝑉 ∈ V → ∅ ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
1411, 13eqsstrd 4017 . 2 𝑉 ∈ V → (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}})
1510, 14pm2.61i 182 1 (Pairs‘𝑉) ⊆ {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wrex 3069  Vcvv 3479  wss 3950  c0 4332  {cpr 4627  cfv 6560  Pairscspr 47469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-spr 47470
This theorem is referenced by:  spr0el  47474
  Copyright terms: Public domain W3C validator