MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsnb Structured version   Visualization version   GIF version

Theorem ssltsnb 27703
Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 18-Jan-2026.)
Hypotheses
Ref Expression
ssltsnb.1 (𝜑𝐴 No )
ssltsnb.2 (𝜑𝐵 No )
Assertion
Ref Expression
ssltsnb (𝜑 → ({𝐴} <<s {𝐵} ↔ 𝐴 <s 𝐵))

Proof of Theorem ssltsnb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5375 . . . 4 {𝐴} ∈ V
2 snex 5375 . . . 4 {𝐵} ∈ V
31, 2pm3.2i 470 . . 3 ({𝐴} ∈ V ∧ {𝐵} ∈ V)
4 brsslt 27696 . . 3 ({𝐴} <<s {𝐵} ↔ (({𝐴} ∈ V ∧ {𝐵} ∈ V) ∧ ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)))
53, 4mpbiran 709 . 2 ({𝐴} <<s {𝐵} ↔ ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦))
6 df-3an 1088 . . 3 (({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦) ↔ (({𝐴} ⊆ No ∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦))
7 ssltsnb.1 . . . . 5 (𝜑𝐴 No )
8 breq1 5095 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
98ralbidv 3152 . . . . . 6 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦))
109ralsng 4627 . . . . 5 (𝐴 No → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦))
117, 10syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦))
127snssd 4760 . . . . . 6 (𝜑 → {𝐴} ⊆ No )
13 ssltsnb.2 . . . . . . 7 (𝜑𝐵 No )
1413snssd 4760 . . . . . 6 (𝜑 → {𝐵} ⊆ No )
1512, 14jca 511 . . . . 5 (𝜑 → ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ))
1615biantrurd 532 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ (({𝐴} ⊆ No ∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)))
17 breq2 5096 . . . . . 6 (𝑦 = 𝐵 → (𝐴 <s 𝑦𝐴 <s 𝐵))
1817ralsng 4627 . . . . 5 (𝐵 No → (∀𝑦 ∈ {𝐵}𝐴 <s 𝑦𝐴 <s 𝐵))
1913, 18syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ {𝐵}𝐴 <s 𝑦𝐴 <s 𝐵))
2011, 16, 193bitr3d 309 . . 3 (𝜑 → ((({𝐴} ⊆ No ∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦) ↔ 𝐴 <s 𝐵))
216, 20bitr2id 284 . 2 (𝜑 → (𝐴 <s 𝐵 ↔ ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)))
225, 21bitr4id 290 1 (𝜑 → ({𝐴} <<s {𝐵} ↔ 𝐴 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  {csn 4577   class class class wbr 5092   No csur 27549   <s cslt 27550   <<s csslt 27691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-sslt 27692
This theorem is referenced by:  ssltsn  27704  pw2cut2  28353
  Copyright terms: Public domain W3C validator