| Step | Hyp | Ref
| Expression |
| 1 | | snex 5375 |
. . . 4
⊢ {𝐴} ∈ V |
| 2 | | snex 5375 |
. . . 4
⊢ {𝐵} ∈ V |
| 3 | 1, 2 | pm3.2i 470 |
. . 3
⊢ ({𝐴} ∈ V ∧ {𝐵} ∈ V) |
| 4 | | brsslt 27696 |
. . 3
⊢ ({𝐴} <<s {𝐵} ↔ (({𝐴} ∈ V ∧ {𝐵} ∈ V) ∧ ({𝐴} ⊆ No
∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦))) |
| 5 | 3, 4 | mpbiran 709 |
. 2
⊢ ({𝐴} <<s {𝐵} ↔ ({𝐴} ⊆ No
∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)) |
| 6 | | df-3an 1088 |
. . 3
⊢ (({𝐴} ⊆
No ∧ {𝐵}
⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦) ↔ (({𝐴} ⊆ No
∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)) |
| 7 | | ssltsnb.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ No
) |
| 8 | | breq1 5095 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦)) |
| 9 | 8 | ralbidv 3152 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦)) |
| 10 | 9 | ralsng 4627 |
. . . . 5
⊢ (𝐴 ∈
No → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦)) |
| 11 | 7, 10 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦)) |
| 12 | 7 | snssd 4760 |
. . . . . 6
⊢ (𝜑 → {𝐴} ⊆ No
) |
| 13 | | ssltsnb.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ No
) |
| 14 | 13 | snssd 4760 |
. . . . . 6
⊢ (𝜑 → {𝐵} ⊆ No
) |
| 15 | 12, 14 | jca 511 |
. . . . 5
⊢ (𝜑 → ({𝐴} ⊆ No
∧ {𝐵} ⊆ No )) |
| 16 | 15 | biantrurd 532 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ (({𝐴} ⊆ No
∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦))) |
| 17 | | breq2 5096 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐴 <s 𝑦 ↔ 𝐴 <s 𝐵)) |
| 18 | 17 | ralsng 4627 |
. . . . 5
⊢ (𝐵 ∈
No → (∀𝑦 ∈ {𝐵}𝐴 <s 𝑦 ↔ 𝐴 <s 𝐵)) |
| 19 | 13, 18 | syl 17 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ {𝐵}𝐴 <s 𝑦 ↔ 𝐴 <s 𝐵)) |
| 20 | 11, 16, 19 | 3bitr3d 309 |
. . 3
⊢ (𝜑 → ((({𝐴} ⊆ No
∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦) ↔ 𝐴 <s 𝐵)) |
| 21 | 6, 20 | bitr2id 284 |
. 2
⊢ (𝜑 → (𝐴 <s 𝐵 ↔ ({𝐴} ⊆ No
∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦))) |
| 22 | 5, 21 | bitr4id 290 |
1
⊢ (𝜑 → ({𝐴} <<s {𝐵} ↔ 𝐴 <s 𝐵)) |