MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsnb Structured version   Visualization version   GIF version

Theorem ssltsnb 27732
Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 18-Jan-2026.)
Hypotheses
Ref Expression
ssltsnb.1 (𝜑𝐴 No )
ssltsnb.2 (𝜑𝐵 No )
Assertion
Ref Expression
ssltsnb (𝜑 → ({𝐴} <<s {𝐵} ↔ 𝐴 <s 𝐵))

Proof of Theorem ssltsnb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5372 . . . 4 {𝐴} ∈ V
2 snex 5372 . . . 4 {𝐵} ∈ V
31, 2pm3.2i 470 . . 3 ({𝐴} ∈ V ∧ {𝐵} ∈ V)
4 brsslt 27725 . . 3 ({𝐴} <<s {𝐵} ↔ (({𝐴} ∈ V ∧ {𝐵} ∈ V) ∧ ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)))
53, 4mpbiran 709 . 2 ({𝐴} <<s {𝐵} ↔ ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦))
6 df-3an 1088 . . 3 (({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦) ↔ (({𝐴} ⊆ No ∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦))
7 ssltsnb.1 . . . . 5 (𝜑𝐴 No )
8 breq1 5092 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
98ralbidv 3155 . . . . . 6 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦))
109ralsng 4625 . . . . 5 (𝐴 No → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦))
117, 10syl 17 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝐵}𝐴 <s 𝑦))
127snssd 4758 . . . . . 6 (𝜑 → {𝐴} ⊆ No )
13 ssltsnb.2 . . . . . . 7 (𝜑𝐵 No )
1413snssd 4758 . . . . . 6 (𝜑 → {𝐵} ⊆ No )
1512, 14jca 511 . . . . 5 (𝜑 → ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ))
1615biantrurd 532 . . . 4 (𝜑 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦 ↔ (({𝐴} ⊆ No ∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)))
17 breq2 5093 . . . . . 6 (𝑦 = 𝐵 → (𝐴 <s 𝑦𝐴 <s 𝐵))
1817ralsng 4625 . . . . 5 (𝐵 No → (∀𝑦 ∈ {𝐵}𝐴 <s 𝑦𝐴 <s 𝐵))
1913, 18syl 17 . . . 4 (𝜑 → (∀𝑦 ∈ {𝐵}𝐴 <s 𝑦𝐴 <s 𝐵))
2011, 16, 193bitr3d 309 . . 3 (𝜑 → ((({𝐴} ⊆ No ∧ {𝐵} ⊆ No ) ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦) ↔ 𝐴 <s 𝐵))
216, 20bitr2id 284 . 2 (𝜑 → (𝐴 <s 𝐵 ↔ ({𝐴} ⊆ No ∧ {𝐵} ⊆ No ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝑥 <s 𝑦)))
225, 21bitr4id 290 1 (𝜑 → ({𝐴} <<s {𝐵} ↔ 𝐴 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  {csn 4573   class class class wbr 5089   No csur 27578   <s cslt 27579   <<s csslt 27720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-sslt 27721
This theorem is referenced by:  ssltsn  27733  pw2cut2  28382
  Copyright terms: Public domain W3C validator