MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2cut2 Structured version   Visualization version   GIF version

Theorem pw2cut2 28353
Description: Cut expression for powers of two. Theorem 12 of [Conway] p. 12-13. (Contributed by Scott Fenton, 18-Jan-2026.)
Assertion
Ref Expression
pw2cut2 ((𝐴 ∈ ℤs𝑁 ∈ ℕ0s) → (𝐴 /su (2ss𝑁)) = ({((𝐴 -s 1s ) /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}))

Proof of Theorem pw2cut2
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑥𝑂 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . . . 7 (𝑚 = 0s → (2ss𝑚) = (2ss 0s ))
2 2sno 28313 . . . . . . . 8 2s No
3 exps0 28321 . . . . . . . 8 (2s No → (2ss 0s ) = 1s )
42, 3ax-mp 5 . . . . . . 7 (2ss 0s ) = 1s
51, 4eqtrdi 2780 . . . . . 6 (𝑚 = 0s → (2ss𝑚) = 1s )
65oveq2d 7365 . . . . 5 (𝑚 = 0s → (𝐴 /su (2ss𝑚)) = (𝐴 /su 1s ))
75oveq2d 7365 . . . . . . 7 (𝑚 = 0s → ((𝐴 -s 1s ) /su (2ss𝑚)) = ((𝐴 -s 1s ) /su 1s ))
87sneqd 4589 . . . . . 6 (𝑚 = 0s → {((𝐴 -s 1s ) /su (2ss𝑚))} = {((𝐴 -s 1s ) /su 1s )})
95oveq2d 7365 . . . . . . 7 (𝑚 = 0s → ((𝐴 +s 1s ) /su (2ss𝑚)) = ((𝐴 +s 1s ) /su 1s ))
109sneqd 4589 . . . . . 6 (𝑚 = 0s → {((𝐴 +s 1s ) /su (2ss𝑚))} = {((𝐴 +s 1s ) /su 1s )})
118, 10oveq12d 7367 . . . . 5 (𝑚 = 0s → ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) = ({((𝐴 -s 1s ) /su 1s )} |s {((𝐴 +s 1s ) /su 1s )}))
126, 11eqeq12d 2745 . . . 4 (𝑚 = 0s → ((𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) ↔ (𝐴 /su 1s ) = ({((𝐴 -s 1s ) /su 1s )} |s {((𝐴 +s 1s ) /su 1s )})))
1312imbi2d 340 . . 3 (𝑚 = 0s → ((𝐴 ∈ ℤs → (𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su 1s ) = ({((𝐴 -s 1s ) /su 1s )} |s {((𝐴 +s 1s ) /su 1s )}))))
14 oveq2 7357 . . . . . 6 (𝑚 = 𝑛 → (2ss𝑚) = (2ss𝑛))
1514oveq2d 7365 . . . . 5 (𝑚 = 𝑛 → (𝐴 /su (2ss𝑚)) = (𝐴 /su (2ss𝑛)))
1614oveq2d 7365 . . . . . . 7 (𝑚 = 𝑛 → ((𝐴 -s 1s ) /su (2ss𝑚)) = ((𝐴 -s 1s ) /su (2ss𝑛)))
1716sneqd 4589 . . . . . 6 (𝑚 = 𝑛 → {((𝐴 -s 1s ) /su (2ss𝑚))} = {((𝐴 -s 1s ) /su (2ss𝑛))})
1814oveq2d 7365 . . . . . . 7 (𝑚 = 𝑛 → ((𝐴 +s 1s ) /su (2ss𝑚)) = ((𝐴 +s 1s ) /su (2ss𝑛)))
1918sneqd 4589 . . . . . 6 (𝑚 = 𝑛 → {((𝐴 +s 1s ) /su (2ss𝑚))} = {((𝐴 +s 1s ) /su (2ss𝑛))})
2017, 19oveq12d 7367 . . . . 5 (𝑚 = 𝑛 → ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))}))
2115, 20eqeq12d 2745 . . . 4 (𝑚 = 𝑛 → ((𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) ↔ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})))
2221imbi2d 340 . . 3 (𝑚 = 𝑛 → ((𝐴 ∈ ℤs → (𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))}))))
23 oveq2 7357 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → (2ss𝑚) = (2ss(𝑛 +s 1s )))
2423oveq2d 7365 . . . . 5 (𝑚 = (𝑛 +s 1s ) → (𝐴 /su (2ss𝑚)) = (𝐴 /su (2ss(𝑛 +s 1s ))))
2523oveq2d 7365 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → ((𝐴 -s 1s ) /su (2ss𝑚)) = ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))))
2625sneqd 4589 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → {((𝐴 -s 1s ) /su (2ss𝑚))} = {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))})
2723oveq2d 7365 . . . . . . 7 (𝑚 = (𝑛 +s 1s ) → ((𝐴 +s 1s ) /su (2ss𝑚)) = ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))))
2827sneqd 4589 . . . . . 6 (𝑚 = (𝑛 +s 1s ) → {((𝐴 +s 1s ) /su (2ss𝑚))} = {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})
2926, 28oveq12d 7367 . . . . 5 (𝑚 = (𝑛 +s 1s ) → ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))
3024, 29eqeq12d 2745 . . . 4 (𝑚 = (𝑛 +s 1s ) → ((𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) ↔ (𝐴 /su (2ss(𝑛 +s 1s ))) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
3130imbi2d 340 . . 3 (𝑚 = (𝑛 +s 1s ) → ((𝐴 ∈ ℤs → (𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su (2ss(𝑛 +s 1s ))) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
32 oveq2 7357 . . . . . 6 (𝑚 = 𝑁 → (2ss𝑚) = (2ss𝑁))
3332oveq2d 7365 . . . . 5 (𝑚 = 𝑁 → (𝐴 /su (2ss𝑚)) = (𝐴 /su (2ss𝑁)))
3432oveq2d 7365 . . . . . . 7 (𝑚 = 𝑁 → ((𝐴 -s 1s ) /su (2ss𝑚)) = ((𝐴 -s 1s ) /su (2ss𝑁)))
3534sneqd 4589 . . . . . 6 (𝑚 = 𝑁 → {((𝐴 -s 1s ) /su (2ss𝑚))} = {((𝐴 -s 1s ) /su (2ss𝑁))})
3632oveq2d 7365 . . . . . . 7 (𝑚 = 𝑁 → ((𝐴 +s 1s ) /su (2ss𝑚)) = ((𝐴 +s 1s ) /su (2ss𝑁)))
3736sneqd 4589 . . . . . 6 (𝑚 = 𝑁 → {((𝐴 +s 1s ) /su (2ss𝑚))} = {((𝐴 +s 1s ) /su (2ss𝑁))})
3835, 37oveq12d 7367 . . . . 5 (𝑚 = 𝑁 → ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) = ({((𝐴 -s 1s ) /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}))
3933, 38eqeq12d 2745 . . . 4 (𝑚 = 𝑁 → ((𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))}) ↔ (𝐴 /su (2ss𝑁)) = ({((𝐴 -s 1s ) /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))})))
4039imbi2d 340 . . 3 (𝑚 = 𝑁 → ((𝐴 ∈ ℤs → (𝐴 /su (2ss𝑚)) = ({((𝐴 -s 1s ) /su (2ss𝑚))} |s {((𝐴 +s 1s ) /su (2ss𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su (2ss𝑁)) = ({((𝐴 -s 1s ) /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}))))
41 zscut 28302 . . . 4 (𝐴 ∈ ℤs𝐴 = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
42 zno 28277 . . . . 5 (𝐴 ∈ ℤs𝐴 No )
43 divs1 28114 . . . . 5 (𝐴 No → (𝐴 /su 1s ) = 𝐴)
4442, 43syl 17 . . . 4 (𝐴 ∈ ℤs → (𝐴 /su 1s ) = 𝐴)
45 1sno 27742 . . . . . . . . 9 1s No
4645a1i 11 . . . . . . . 8 (𝐴 ∈ ℤs → 1s No )
4742, 46subscld 27974 . . . . . . 7 (𝐴 ∈ ℤs → (𝐴 -s 1s ) ∈ No )
48 divs1 28114 . . . . . . 7 ((𝐴 -s 1s ) ∈ No → ((𝐴 -s 1s ) /su 1s ) = (𝐴 -s 1s ))
4947, 48syl 17 . . . . . 6 (𝐴 ∈ ℤs → ((𝐴 -s 1s ) /su 1s ) = (𝐴 -s 1s ))
5049sneqd 4589 . . . . 5 (𝐴 ∈ ℤs → {((𝐴 -s 1s ) /su 1s )} = {(𝐴 -s 1s )})
5142, 46addscld 27894 . . . . . . 7 (𝐴 ∈ ℤs → (𝐴 +s 1s ) ∈ No )
52 divs1 28114 . . . . . . 7 ((𝐴 +s 1s ) ∈ No → ((𝐴 +s 1s ) /su 1s ) = (𝐴 +s 1s ))
5351, 52syl 17 . . . . . 6 (𝐴 ∈ ℤs → ((𝐴 +s 1s ) /su 1s ) = (𝐴 +s 1s ))
5453sneqd 4589 . . . . 5 (𝐴 ∈ ℤs → {((𝐴 +s 1s ) /su 1s )} = {(𝐴 +s 1s )})
5550, 54oveq12d 7367 . . . 4 (𝐴 ∈ ℤs → ({((𝐴 -s 1s ) /su 1s )} |s {((𝐴 +s 1s ) /su 1s )}) = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s )}))
5641, 44, 553eqtr4d 2774 . . 3 (𝐴 ∈ ℤs → (𝐴 /su 1s ) = ({((𝐴 -s 1s ) /su 1s )} |s {((𝐴 +s 1s ) /su 1s )}))
57 simp2 1137 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 𝐴 ∈ ℤs)
5857znod 28278 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 𝐴 No )
5945a1i 11 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 1s No )
6058, 59subscld 27974 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 -s 1s ) ∈ No )
61 simp1 1136 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 𝑛 ∈ ℕ0s)
62 peano2n0s 28230 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0s → (𝑛 +s 1s ) ∈ ℕ0s)
6361, 62syl 17 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝑛 +s 1s ) ∈ ℕ0s)
6460, 63pw2divscld 28333 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ No )
6558, 59addscld 27894 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 +s 1s ) ∈ No )
6665, 63pw2divscld 28333 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ No )
6758sltm1d 28012 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 -s 1s ) <s 𝐴)
6858sltp1d 27929 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 𝐴 <s (𝐴 +s 1s ))
6960, 58, 65, 67, 68slttrd 27669 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 -s 1s ) <s (𝐴 +s 1s ))
7060, 65, 63pw2sltdiv1d 28346 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) <s (𝐴 +s 1s ) ↔ ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) <s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
7169, 70mpbid 232 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) <s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))))
7264, 66, 71ssltsn 27704 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} <<s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})
7372scutcld 27715 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ∈ No )
7464, 73addscld 27894 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ∈ No )
7566, 73addscld 27894 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ∈ No )
7664, 66, 73sltadd1d 27912 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) <s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) ↔ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
7771, 76mpbid 232 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
7874, 75, 77ssltsn 27704 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
7960, 61pw2divscld 28333 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss𝑛)) ∈ No )
8065, 61pw2divscld 28333 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 +s 1s ) /su (2ss𝑛)) ∈ No )
8160, 65, 61pw2sltdiv1d 28346 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) <s (𝐴 +s 1s ) ↔ ((𝐴 -s 1s ) /su (2ss𝑛)) <s ((𝐴 +s 1s ) /su (2ss𝑛))))
8269, 81mpbid 232 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss𝑛)) <s ((𝐴 +s 1s ) /su (2ss𝑛)))
8379, 80, 82ssltsn 27704 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {((𝐴 -s 1s ) /su (2ss𝑛))} <<s {((𝐴 +s 1s ) /su (2ss𝑛))})
84 eqidd 2730 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} |s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) = ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} |s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
85 simp3 1138 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))}))
8658, 61pw2divscld 28333 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 /su (2ss𝑛)) ∈ No )
87 scutcut 27713 . . . . . . . . . . . . . 14 ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} <<s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))} → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ∈ No ∧ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} <<s {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})} ∧ {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})} <<s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))
8872, 87syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ∈ No ∧ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} <<s {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})} ∧ {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})} <<s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))
8988simp3d 1144 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})} <<s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})
90 ovex 7382 . . . . . . . . . . . . . 14 ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ∈ V
9190snid 4614 . . . . . . . . . . . . 13 ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ∈ {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})}
9291a1i 11 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ∈ {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})})
93 ovex 7382 . . . . . . . . . . . . . 14 ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ V
9493snid 4614 . . . . . . . . . . . . 13 ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}
9594a1i 11 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})
9689, 92, 95ssltsepcd 27706 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) <s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))))
9773, 66, 64sltadd2d 27911 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) <s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) ↔ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))))))
9896, 97mpbid 232 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
9958, 58, 59addsassd 27920 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
10099oveq1d 7364 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 𝐴) +s 1s ) -s 1s ) = ((𝐴 +s (𝐴 +s 1s )) -s 1s ))
10158, 58addscld 27894 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 +s 𝐴) ∈ No )
102 pncans 27983 . . . . . . . . . . . . . . 15 (((𝐴 +s 𝐴) ∈ No ∧ 1s No ) → (((𝐴 +s 𝐴) +s 1s ) -s 1s ) = (𝐴 +s 𝐴))
103101, 45, 102sylancl 586 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 𝐴) +s 1s ) -s 1s ) = (𝐴 +s 𝐴))
104 no2times 28311 . . . . . . . . . . . . . . 15 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
10558, 104syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s 𝐴) = (𝐴 +s 𝐴))
106103, 105eqtr4d 2767 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
10758, 65, 59addsubsd 27993 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 +s (𝐴 +s 1s )) -s 1s ) = ((𝐴 -s 1s ) +s (𝐴 +s 1s )))
108100, 106, 1073eqtr3rd 2773 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) +s (𝐴 +s 1s )) = (2s ·s 𝐴))
109108oveq1d 7364 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) +s (𝐴 +s 1s )) /su (2ss(𝑛 +s 1s ))) = ((2s ·s 𝐴) /su (2ss(𝑛 +s 1s ))))
11060, 65, 63pw2divsdird 28342 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) +s (𝐴 +s 1s )) /su (2ss(𝑛 +s 1s ))) = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
111 1n0s 28247 . . . . . . . . . . . . . 14 1s ∈ ℕ0s
112111a1i 11 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 1s ∈ ℕ0s)
11358, 61, 112pw2divscan4d 28338 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 /su (2ss𝑛)) = (((2ss 1s ) ·s 𝐴) /su (2ss(𝑛 +s 1s ))))
114 exps1 28322 . . . . . . . . . . . . . . 15 (2s No → (2ss 1s ) = 2s)
1152, 114ax-mp 5 . . . . . . . . . . . . . 14 (2ss 1s ) = 2s
116115oveq1i 7359 . . . . . . . . . . . . 13 ((2ss 1s ) ·s 𝐴) = (2s ·s 𝐴)
117116oveq1i 7359 . . . . . . . . . . . 12 (((2ss 1s ) ·s 𝐴) /su (2ss(𝑛 +s 1s ))) = ((2s ·s 𝐴) /su (2ss(𝑛 +s 1s )))
118113, 117eqtr2di 2781 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((2s ·s 𝐴) /su (2ss(𝑛 +s 1s ))) = (𝐴 /su (2ss𝑛)))
119109, 110, 1183eqtr3d 2772 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))) = (𝐴 /su (2ss𝑛)))
12098, 119breqtrd 5118 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s (𝐴 /su (2ss𝑛)))
12174, 86, 120ssltsn 27704 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {(𝐴 /su (2ss𝑛))})
12266, 64addscomd 27881 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
123122, 119eqtrd 2764 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) = (𝐴 /su (2ss𝑛)))
12488simp2d 1143 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} <<s {({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})})
125 ovex 7382 . . . . . . . . . . . . . 14 ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ V
126125snid 4614 . . . . . . . . . . . . 13 ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}
127126a1i 11 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))})
128124, 127, 92ssltsepcd 27706 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) <s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))
12964, 73, 66sltadd2d 27911 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) <s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ↔ (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
130128, 129mpbid 232 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
131123, 130eqbrtrrd 5116 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 /su (2ss𝑛)) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
13286, 75, 131ssltsn 27704 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {(𝐴 /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
13360, 61, 112pw2divscan4d 28338 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss𝑛)) = (((2ss 1s ) ·s (𝐴 -s 1s )) /su (2ss(𝑛 +s 1s ))))
134115oveq1i 7359 . . . . . . . . . . . . . . . . 17 ((2ss 1s ) ·s (𝐴 -s 1s )) = (2s ·s (𝐴 -s 1s ))
135 no2times 28311 . . . . . . . . . . . . . . . . . 18 ((𝐴 -s 1s ) ∈ No → (2s ·s (𝐴 -s 1s )) = ((𝐴 -s 1s ) +s (𝐴 -s 1s )))
13660, 135syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s (𝐴 -s 1s )) = ((𝐴 -s 1s ) +s (𝐴 -s 1s )))
137134, 136eqtrid 2776 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((2ss 1s ) ·s (𝐴 -s 1s )) = ((𝐴 -s 1s ) +s (𝐴 -s 1s )))
138137oveq1d 7364 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((2ss 1s ) ·s (𝐴 -s 1s )) /su (2ss(𝑛 +s 1s ))) = (((𝐴 -s 1s ) +s (𝐴 -s 1s )) /su (2ss(𝑛 +s 1s ))))
13960, 60, 63pw2divsdird 28342 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) +s (𝐴 -s 1s )) /su (2ss(𝑛 +s 1s ))) = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))))
140133, 138, 1393eqtrrd 2769 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) = ((𝐴 -s 1s ) /su (2ss𝑛)))
14164, 73, 64sltadd2d 27911 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) <s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ↔ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) <s (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
142128, 141mpbid 232 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) <s (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
143140, 142eqbrtrrd 5116 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 -s 1s ) /su (2ss𝑛)) <s (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
144 sltasym 27658 . . . . . . . . . . . . . 14 ((((𝐴 -s 1s ) /su (2ss𝑛)) ∈ No ∧ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ∈ No ) → (((𝐴 -s 1s ) /su (2ss𝑛)) <s (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) → ¬ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s ((𝐴 -s 1s ) /su (2ss𝑛))))
14579, 74, 144syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 -s 1s ) /su (2ss𝑛)) <s (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) → ¬ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s ((𝐴 -s 1s ) /su (2ss𝑛))))
146143, 145mpd 15 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ¬ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s ((𝐴 -s 1s ) /su (2ss𝑛)))
14774, 79ssltsnb 27703 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 -s 1s ) /su (2ss𝑛))} ↔ (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s ((𝐴 -s 1s ) /su (2ss𝑛))))
148146, 147mtbird 325 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ¬ {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 -s 1s ) /su (2ss𝑛))})
149148intnanrd 489 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 -s 1s ) /su (2ss𝑛))} ∧ {((𝐴 -s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
150 ovex 7382 . . . . . . . . . . 11 ((𝐴 -s 1s ) /su (2ss𝑛)) ∈ V
151 sneq 4587 . . . . . . . . . . . . . 14 (𝑥𝑂 = ((𝐴 -s 1s ) /su (2ss𝑛)) → {𝑥𝑂} = {((𝐴 -s 1s ) /su (2ss𝑛))})
152151breq2d 5104 . . . . . . . . . . . . 13 (𝑥𝑂 = ((𝐴 -s 1s ) /su (2ss𝑛)) → ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ↔ {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 -s 1s ) /su (2ss𝑛))}))
153151breq1d 5102 . . . . . . . . . . . . 13 (𝑥𝑂 = ((𝐴 -s 1s ) /su (2ss𝑛)) → ({𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ↔ {((𝐴 -s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
154152, 153anbi12d 632 . . . . . . . . . . . 12 (𝑥𝑂 = ((𝐴 -s 1s ) /su (2ss𝑛)) → (({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ↔ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 -s 1s ) /su (2ss𝑛))} ∧ {((𝐴 -s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})))
155154notbid 318 . . . . . . . . . . 11 (𝑥𝑂 = ((𝐴 -s 1s ) /su (2ss𝑛)) → (¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ↔ ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 -s 1s ) /su (2ss𝑛))} ∧ {((𝐴 -s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})))
156150, 155ralsn 4633 . . . . . . . . . 10 (∀𝑥𝑂 ∈ {((𝐴 -s 1s ) /su (2ss𝑛))} ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ↔ ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 -s 1s ) /su (2ss𝑛))} ∧ {((𝐴 -s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
157149, 156sylibr 234 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ∀𝑥𝑂 ∈ {((𝐴 -s 1s ) /su (2ss𝑛))} ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
15873, 66, 66sltadd2d 27911 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) <s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) ↔ (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))))))
15996, 158mpbid 232 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
16065, 61, 112pw2divscan4d 28338 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((𝐴 +s 1s ) /su (2ss𝑛)) = (((2ss 1s ) ·s (𝐴 +s 1s )) /su (2ss(𝑛 +s 1s ))))
161115oveq1i 7359 . . . . . . . . . . . . . . . . 17 ((2ss 1s ) ·s (𝐴 +s 1s )) = (2s ·s (𝐴 +s 1s ))
162 no2times 28311 . . . . . . . . . . . . . . . . . 18 ((𝐴 +s 1s ) ∈ No → (2s ·s (𝐴 +s 1s )) = ((𝐴 +s 1s ) +s (𝐴 +s 1s )))
16365, 162syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s (𝐴 +s 1s )) = ((𝐴 +s 1s ) +s (𝐴 +s 1s )))
164161, 163eqtrid 2776 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((2ss 1s ) ·s (𝐴 +s 1s )) = ((𝐴 +s 1s ) +s (𝐴 +s 1s )))
165164oveq1d 7364 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((2ss 1s ) ·s (𝐴 +s 1s )) /su (2ss(𝑛 +s 1s ))) = (((𝐴 +s 1s ) +s (𝐴 +s 1s )) /su (2ss(𝑛 +s 1s ))))
16665, 65, 63pw2divsdird 28342 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) +s (𝐴 +s 1s )) /su (2ss(𝑛 +s 1s ))) = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
167160, 165, 1663eqtrrd 2769 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))) = ((𝐴 +s 1s ) /su (2ss𝑛)))
168159, 167breqtrd 5118 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s ((𝐴 +s 1s ) /su (2ss𝑛)))
169 sltasym 27658 . . . . . . . . . . . . . 14 (((((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ∈ No ∧ ((𝐴 +s 1s ) /su (2ss𝑛)) ∈ No ) → ((((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s ((𝐴 +s 1s ) /su (2ss𝑛)) → ¬ ((𝐴 +s 1s ) /su (2ss𝑛)) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
17075, 80, 169syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) <s ((𝐴 +s 1s ) /su (2ss𝑛)) → ¬ ((𝐴 +s 1s ) /su (2ss𝑛)) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
171168, 170mpd 15 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ¬ ((𝐴 +s 1s ) /su (2ss𝑛)) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
17280, 75ssltsnb 27703 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({((𝐴 +s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ↔ ((𝐴 +s 1s ) /su (2ss𝑛)) <s (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
173171, 172mtbird 325 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ¬ {((𝐴 +s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
174173intnand 488 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 +s 1s ) /su (2ss𝑛))} ∧ {((𝐴 +s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
175 ovex 7382 . . . . . . . . . . 11 ((𝐴 +s 1s ) /su (2ss𝑛)) ∈ V
176 sneq 4587 . . . . . . . . . . . . . 14 (𝑥𝑂 = ((𝐴 +s 1s ) /su (2ss𝑛)) → {𝑥𝑂} = {((𝐴 +s 1s ) /su (2ss𝑛))})
177176breq2d 5104 . . . . . . . . . . . . 13 (𝑥𝑂 = ((𝐴 +s 1s ) /su (2ss𝑛)) → ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ↔ {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 +s 1s ) /su (2ss𝑛))}))
178176breq1d 5102 . . . . . . . . . . . . 13 (𝑥𝑂 = ((𝐴 +s 1s ) /su (2ss𝑛)) → ({𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ↔ {((𝐴 +s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
179177, 178anbi12d 632 . . . . . . . . . . . 12 (𝑥𝑂 = ((𝐴 +s 1s ) /su (2ss𝑛)) → (({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ↔ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 +s 1s ) /su (2ss𝑛))} ∧ {((𝐴 +s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})))
180179notbid 318 . . . . . . . . . . 11 (𝑥𝑂 = ((𝐴 +s 1s ) /su (2ss𝑛)) → (¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ↔ ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 +s 1s ) /su (2ss𝑛))} ∧ {((𝐴 +s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})))
181175, 180ralsn 4633 . . . . . . . . . 10 (∀𝑥𝑂 ∈ {((𝐴 +s 1s ) /su (2ss𝑛))} ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ↔ ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {((𝐴 +s 1s ) /su (2ss𝑛))} ∧ {((𝐴 +s 1s ) /su (2ss𝑛))} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
182174, 181sylibr 234 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ∀𝑥𝑂 ∈ {((𝐴 +s 1s ) /su (2ss𝑛))} ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
183 ralunb 4148 . . . . . . . . 9 (∀𝑥𝑂 ∈ ({((𝐴 -s 1s ) /su (2ss𝑛))} ∪ {((𝐴 +s 1s ) /su (2ss𝑛))}) ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ↔ (∀𝑥𝑂 ∈ {((𝐴 -s 1s ) /su (2ss𝑛))} ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) ∧ ∀𝑥𝑂 ∈ {((𝐴 +s 1s ) /su (2ss𝑛))} ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})))
184157, 182, 183sylanbrc 583 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ∀𝑥𝑂 ∈ ({((𝐴 -s 1s ) /su (2ss𝑛))} ∪ {((𝐴 +s 1s ) /su (2ss𝑛))}) ¬ ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} <<s {𝑥𝑂} ∧ {𝑥𝑂} <<s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
18578, 83, 84, 85, 121, 132, 184eqscut3 27736 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} |s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) = (𝐴 /su (2ss𝑛)))
186 no2times 28311 . . . . . . . . 9 (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) ∈ No → (2s ·s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
18773, 186syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
188 eqidd 2730 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))
18972, 72, 188, 188addsunif 27916 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) = (({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)})))
190 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑏 = ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) → (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
191190eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑏 = ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) → (𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ↔ 𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
192125, 191rexsn 4634 . . . . . . . . . . . . 13 (∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ↔ 𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
193192abbii 2796 . . . . . . . . . . . 12 {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} = {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
194193a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} = {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
195 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑏 = ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))))
196195eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑏 = ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) → (𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) ↔ 𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))))))
197125, 196rexsn 4634 . . . . . . . . . . . . 13 (∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) ↔ 𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))))
19873, 64addscomd 27881 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
199198eqeq2d 2740 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))) ↔ 𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
200197, 199bitrid 283 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) ↔ 𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
201200abbidv 2795 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)} = {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
202194, 201uneq12d 4120 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)}) = ({𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
203 unidm 4108 . . . . . . . . . . 11 ({𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) = {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
204 df-sn 4578 . . . . . . . . . . 11 {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} = {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
205203, 204eqtr4i 2755 . . . . . . . . . 10 ({𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎𝑎 = (((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) = {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
206202, 205eqtrdi 2780 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)}) = {(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
207 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑏 = ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) → (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
208207eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑏 = ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) → (𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ↔ 𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
20993, 208rexsn 4634 . . . . . . . . . . . . 13 (∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ↔ 𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
210209abbii 2796 . . . . . . . . . . . 12 {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} = {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
211210a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} = {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
212 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑏 = ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
213212eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑏 = ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) → (𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) ↔ 𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))))))
21493, 213rexsn 4634 . . . . . . . . . . . . 13 (∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) ↔ 𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))))
21573, 66addscomd 27881 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))) = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
216215eqeq2d 2740 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s ((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))) ↔ 𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
217214, 216bitrid 283 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏) ↔ 𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
218217abbidv 2795 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)} = {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
219211, 218uneq12d 4120 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)}) = ({𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
220 unidm 4108 . . . . . . . . . . 11 ({𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) = {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
221 df-sn 4578 . . . . . . . . . . 11 {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} = {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
222220, 221eqtr4i 2755 . . . . . . . . . 10 ({𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎𝑎 = (((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}) = {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}
223219, 222eqtrdi 2780 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)}) = {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))})
224206, 223oveq12d 7367 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} ∪ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}) +s 𝑏)})) = ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} |s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
225187, 189, 2243eqtrd 2768 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) = ({(((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))} |s {(((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s ))) +s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))}))
2262a1i 11 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 2s No )
227226, 58, 63pw2divsassd 28337 . . . . . . . . 9 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((2s ·s 𝐴) /su (2ss(𝑛 +s 1s ))) = (2s ·s (𝐴 /su (2ss(𝑛 +s 1s )))))
228117, 227eqtr2id 2777 . . . . . . . 8 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s (𝐴 /su (2ss(𝑛 +s 1s )))) = (((2ss 1s ) ·s 𝐴) /su (2ss(𝑛 +s 1s ))))
229228, 113eqtr4d 2767 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s (𝐴 /su (2ss(𝑛 +s 1s )))) = (𝐴 /su (2ss𝑛)))
230185, 225, 2293eqtr4rd 2775 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (2s ·s (𝐴 /su (2ss(𝑛 +s 1s )))) = (2s ·s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
23158, 63pw2divscld 28333 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 /su (2ss(𝑛 +s 1s ))) ∈ No )
232 2ne0s 28314 . . . . . . . 8 2s ≠ 0s
233232a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → 2s ≠ 0s )
234231, 73, 226, 233mulscan1d 28090 . . . . . 6 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → ((2s ·s (𝐴 /su (2ss(𝑛 +s 1s )))) = (2s ·s ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})) ↔ (𝐴 /su (2ss(𝑛 +s 1s ))) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))})))
235230, 234mpbid 232 . . . . 5 ((𝑛 ∈ ℕ0s𝐴 ∈ ℤs ∧ (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 /su (2ss(𝑛 +s 1s ))) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))
2362353exp 1119 . . . 4 (𝑛 ∈ ℕ0s → (𝐴 ∈ ℤs → ((𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))}) → (𝐴 /su (2ss(𝑛 +s 1s ))) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
237236a2d 29 . . 3 (𝑛 ∈ ℕ0s → ((𝐴 ∈ ℤs → (𝐴 /su (2ss𝑛)) = ({((𝐴 -s 1s ) /su (2ss𝑛))} |s {((𝐴 +s 1s ) /su (2ss𝑛))})) → (𝐴 ∈ ℤs → (𝐴 /su (2ss(𝑛 +s 1s ))) = ({((𝐴 -s 1s ) /su (2ss(𝑛 +s 1s )))} |s {((𝐴 +s 1s ) /su (2ss(𝑛 +s 1s )))}))))
23813, 22, 31, 40, 56, 237n0sind 28232 . 2 (𝑁 ∈ ℕ0s → (𝐴 ∈ ℤs → (𝐴 /su (2ss𝑁)) = ({((𝐴 -s 1s ) /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))})))
239238impcom 407 1 ((𝐴 ∈ ℤs𝑁 ∈ ℕ0s) → (𝐴 /su (2ss𝑁)) = ({((𝐴 -s 1s ) /su (2ss𝑁))} |s {((𝐴 +s 1s ) /su (2ss𝑁))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  cun 3901  {csn 4577   class class class wbr 5092  (class class class)co 7349   No csur 27549   <s cslt 27550   <<s csslt 27691   |s cscut 27693   0s c0s 27737   1s c1s 27738   +s cadds 27873   -s csubs 27933   ·s cmuls 28016   /su cdivs 28097  0scnn0s 28213  sczs 28273  2sc2s 28304  scexps 28306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-divs 28098  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-2s 28305  df-exps 28307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator