| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7357 |
. . . . . . 7
⊢ (𝑚 = 0s →
(2s↑s𝑚) = (2s↑s
0s )) |
| 2 | | 2sno 28313 |
. . . . . . . 8
⊢
2s ∈ No |
| 3 | | exps0 28321 |
. . . . . . . 8
⊢
(2s ∈ No →
(2s↑s 0s ) = 1s
) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢
(2s↑s 0s ) =
1s |
| 5 | 1, 4 | eqtrdi 2780 |
. . . . . 6
⊢ (𝑚 = 0s →
(2s↑s𝑚) = 1s ) |
| 6 | 5 | oveq2d 7365 |
. . . . 5
⊢ (𝑚 = 0s → (𝐴 /su
(2s↑s𝑚)) = (𝐴 /su 1s
)) |
| 7 | 5 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = 0s → ((𝐴 -s 1s )
/su (2s↑s𝑚)) = ((𝐴 -s 1s )
/su 1s )) |
| 8 | 7 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = 0s → {((𝐴 -s 1s )
/su (2s↑s𝑚))} = {((𝐴 -s 1s )
/su 1s )}) |
| 9 | 5 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = 0s → ((𝐴 +s 1s )
/su (2s↑s𝑚)) = ((𝐴 +s 1s )
/su 1s )) |
| 10 | 9 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = 0s → {((𝐴 +s 1s )
/su (2s↑s𝑚))} = {((𝐴 +s 1s )
/su 1s )}) |
| 11 | 8, 10 | oveq12d 7367 |
. . . . 5
⊢ (𝑚 = 0s →
({((𝐴 -s
1s ) /su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) = ({((𝐴 -s 1s )
/su 1s )} |s {((𝐴 +s 1s )
/su 1s )})) |
| 12 | 6, 11 | eqeq12d 2745 |
. . . 4
⊢ (𝑚 = 0s → ((𝐴 /su
(2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) ↔ (𝐴 /su 1s ) =
({((𝐴 -s
1s ) /su 1s )} |s {((𝐴 +s 1s )
/su 1s )}))) |
| 13 | 12 | imbi2d 340 |
. . 3
⊢ (𝑚 = 0s → ((𝐴 ∈ ℤs
→ (𝐴
/su (2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su
1s ) = ({((𝐴
-s 1s ) /su 1s )} |s {((𝐴 +s 1s )
/su 1s )})))) |
| 14 | | oveq2 7357 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (2s↑s𝑚) =
(2s↑s𝑛)) |
| 15 | 14 | oveq2d 7365 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝐴 /su
(2s↑s𝑚)) = (𝐴 /su
(2s↑s𝑛))) |
| 16 | 14 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝐴 -s 1s )
/su (2s↑s𝑚)) = ((𝐴 -s 1s )
/su (2s↑s𝑛))) |
| 17 | 16 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = 𝑛 → {((𝐴 -s 1s )
/su (2s↑s𝑚))} = {((𝐴 -s 1s )
/su (2s↑s𝑛))}) |
| 18 | 14 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝐴 +s 1s )
/su (2s↑s𝑚)) = ((𝐴 +s 1s )
/su (2s↑s𝑛))) |
| 19 | 18 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = 𝑛 → {((𝐴 +s 1s )
/su (2s↑s𝑚))} = {((𝐴 +s 1s )
/su (2s↑s𝑛))}) |
| 20 | 17, 19 | oveq12d 7367 |
. . . . 5
⊢ (𝑚 = 𝑛 → ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) |
| 21 | 15, 20 | eqeq12d 2745 |
. . . 4
⊢ (𝑚 = 𝑛 → ((𝐴 /su
(2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) ↔ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))}))) |
| 22 | 21 | imbi2d 340 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝐴 ∈ ℤs → (𝐴 /su
(2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})))) |
| 23 | | oveq2 7357 |
. . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) →
(2s↑s𝑚) = (2s↑s(𝑛 +s 1s
))) |
| 24 | 23 | oveq2d 7365 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) → (𝐴 /su
(2s↑s𝑚)) = (𝐴 /su
(2s↑s(𝑛 +s 1s
)))) |
| 25 | 23 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴 -s 1s )
/su (2s↑s𝑚)) = ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s
)))) |
| 26 | 25 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) →
{((𝐴 -s
1s ) /su (2s↑s𝑚))} = {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s
)))}) |
| 27 | 23 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴 +s 1s )
/su (2s↑s𝑚)) = ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))) |
| 28 | 27 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = (𝑛 +s 1s ) →
{((𝐴 +s
1s ) /su (2s↑s𝑚))} = {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}) |
| 29 | 26, 28 | oveq12d 7367 |
. . . . 5
⊢ (𝑚 = (𝑛 +s 1s ) →
({((𝐴 -s
1s ) /su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) = ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})) |
| 30 | 24, 29 | eqeq12d 2745 |
. . . 4
⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴 /su
(2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) ↔ (𝐴 /su
(2s↑s(𝑛 +s 1s ))) = ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 31 | 30 | imbi2d 340 |
. . 3
⊢ (𝑚 = (𝑛 +s 1s ) → ((𝐴 ∈ ℤs
→ (𝐴
/su (2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su
(2s↑s(𝑛 +s 1s ))) = ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 32 | | oveq2 7357 |
. . . . . 6
⊢ (𝑚 = 𝑁 →
(2s↑s𝑚) = (2s↑s𝑁)) |
| 33 | 32 | oveq2d 7365 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝐴 /su
(2s↑s𝑚)) = (𝐴 /su
(2s↑s𝑁))) |
| 34 | 32 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → ((𝐴 -s 1s )
/su (2s↑s𝑚)) = ((𝐴 -s 1s )
/su (2s↑s𝑁))) |
| 35 | 34 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = 𝑁 → {((𝐴 -s 1s )
/su (2s↑s𝑚))} = {((𝐴 -s 1s )
/su (2s↑s𝑁))}) |
| 36 | 32 | oveq2d 7365 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → ((𝐴 +s 1s )
/su (2s↑s𝑚)) = ((𝐴 +s 1s )
/su (2s↑s𝑁))) |
| 37 | 36 | sneqd 4589 |
. . . . . 6
⊢ (𝑚 = 𝑁 → {((𝐴 +s 1s )
/su (2s↑s𝑚))} = {((𝐴 +s 1s )
/su (2s↑s𝑁))}) |
| 38 | 35, 37 | oveq12d 7367 |
. . . . 5
⊢ (𝑚 = 𝑁 → ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) = ({((𝐴 -s 1s )
/su (2s↑s𝑁))} |s {((𝐴 +s 1s )
/su (2s↑s𝑁))})) |
| 39 | 33, 38 | eqeq12d 2745 |
. . . 4
⊢ (𝑚 = 𝑁 → ((𝐴 /su
(2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))}) ↔ (𝐴 /su
(2s↑s𝑁)) = ({((𝐴 -s 1s )
/su (2s↑s𝑁))} |s {((𝐴 +s 1s )
/su (2s↑s𝑁))}))) |
| 40 | 39 | imbi2d 340 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝐴 ∈ ℤs → (𝐴 /su
(2s↑s𝑚)) = ({((𝐴 -s 1s )
/su (2s↑s𝑚))} |s {((𝐴 +s 1s )
/su (2s↑s𝑚))})) ↔ (𝐴 ∈ ℤs → (𝐴 /su
(2s↑s𝑁)) = ({((𝐴 -s 1s )
/su (2s↑s𝑁))} |s {((𝐴 +s 1s )
/su (2s↑s𝑁))})))) |
| 41 | | zscut 28302 |
. . . 4
⊢ (𝐴 ∈ ℤs
→ 𝐴 = ({(𝐴 -s 1s )}
|s {(𝐴 +s
1s )})) |
| 42 | | zno 28277 |
. . . . 5
⊢ (𝐴 ∈ ℤs
→ 𝐴 ∈ No ) |
| 43 | | divs1 28114 |
. . . . 5
⊢ (𝐴 ∈
No → (𝐴
/su 1s ) = 𝐴) |
| 44 | 42, 43 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ℤs
→ (𝐴
/su 1s ) = 𝐴) |
| 45 | | 1sno 27742 |
. . . . . . . . 9
⊢
1s ∈ No |
| 46 | 45 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤs
→ 1s ∈ No ) |
| 47 | 42, 46 | subscld 27974 |
. . . . . . 7
⊢ (𝐴 ∈ ℤs
→ (𝐴 -s
1s ) ∈ No ) |
| 48 | | divs1 28114 |
. . . . . . 7
⊢ ((𝐴 -s 1s )
∈ No → ((𝐴 -s 1s )
/su 1s ) = (𝐴 -s 1s
)) |
| 49 | 47, 48 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ℤs
→ ((𝐴 -s
1s ) /su 1s ) = (𝐴 -s 1s
)) |
| 50 | 49 | sneqd 4589 |
. . . . 5
⊢ (𝐴 ∈ ℤs
→ {((𝐴 -s
1s ) /su 1s )} = {(𝐴 -s 1s
)}) |
| 51 | 42, 46 | addscld 27894 |
. . . . . . 7
⊢ (𝐴 ∈ ℤs
→ (𝐴 +s
1s ) ∈ No ) |
| 52 | | divs1 28114 |
. . . . . . 7
⊢ ((𝐴 +s 1s )
∈ No → ((𝐴 +s 1s )
/su 1s ) = (𝐴 +s 1s
)) |
| 53 | 51, 52 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ℤs
→ ((𝐴 +s
1s ) /su 1s ) = (𝐴 +s 1s
)) |
| 54 | 53 | sneqd 4589 |
. . . . 5
⊢ (𝐴 ∈ ℤs
→ {((𝐴 +s
1s ) /su 1s )} = {(𝐴 +s 1s
)}) |
| 55 | 50, 54 | oveq12d 7367 |
. . . 4
⊢ (𝐴 ∈ ℤs
→ ({((𝐴 -s
1s ) /su 1s )} |s {((𝐴 +s 1s )
/su 1s )}) = ({(𝐴 -s 1s )} |s {(𝐴 +s 1s
)})) |
| 56 | 41, 44, 55 | 3eqtr4d 2774 |
. . 3
⊢ (𝐴 ∈ ℤs
→ (𝐴
/su 1s ) = ({((𝐴 -s 1s )
/su 1s )} |s {((𝐴 +s 1s )
/su 1s )})) |
| 57 | | simp2 1137 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 𝐴 ∈
ℤs) |
| 58 | 57 | znod 28278 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 𝐴 ∈ No
) |
| 59 | 45 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 1s ∈ No ) |
| 60 | 58, 59 | subscld 27974 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 -s 1s ) ∈ No ) |
| 61 | | simp1 1136 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 𝑛 ∈
ℕ0s) |
| 62 | | peano2n0s 28230 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0s
→ (𝑛 +s
1s ) ∈ ℕ0s) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝑛 +s 1s ) ∈
ℕ0s) |
| 64 | 60, 63 | pw2divscld 28333 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈ No ) |
| 65 | 58, 59 | addscld 27894 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 +s 1s ) ∈ No ) |
| 66 | 65, 63 | pw2divscld 28333 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈ No ) |
| 67 | 58 | sltm1d 28012 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 -s 1s ) <s 𝐴) |
| 68 | 58 | sltp1d 27929 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 𝐴 <s (𝐴 +s 1s
)) |
| 69 | 60, 58, 65, 67, 68 | slttrd 27669 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 -s 1s ) <s (𝐴 +s 1s
)) |
| 70 | 60, 65, 63 | pw2sltdiv1d 28346 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s ) <s (𝐴 +s 1s )
↔ ((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
<s ((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
))))) |
| 71 | 69, 70 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) <s
((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))) |
| 72 | 64, 66, 71 | ssltsn 27704 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} <<s
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) |
| 73 | 72 | scutcld 27715 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) ∈
No ) |
| 74 | 64, 73 | addscld 27894 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ∈
No ) |
| 75 | 66, 73 | addscld 27894 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ∈
No ) |
| 76 | 64, 66, 73 | sltadd1d 27912 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) <s
((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
↔ (((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 77 | 71, 76 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 78 | 74, 75, 77 | ssltsn 27704 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {(((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 79 | 60, 61 | pw2divscld 28333 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s𝑛)) ∈ No
) |
| 80 | 65, 61 | pw2divscld 28333 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 +s 1s )
/su (2s↑s𝑛)) ∈ No
) |
| 81 | 60, 65, 61 | pw2sltdiv1d 28346 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s ) <s (𝐴 +s 1s )
↔ ((𝐴 -s
1s ) /su (2s↑s𝑛)) <s ((𝐴 +s 1s )
/su (2s↑s𝑛)))) |
| 82 | 69, 81 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s𝑛)) <s ((𝐴 +s 1s )
/su (2s↑s𝑛))) |
| 83 | 79, 80, 82 | ssltsn 27704 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {((𝐴 -s 1s )
/su (2s↑s𝑛))} <<s {((𝐴 +s 1s )
/su (2s↑s𝑛))}) |
| 84 | | eqidd 2730 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} |s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) =
({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} |s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 85 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) |
| 86 | 58, 61 | pw2divscld 28333 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 /su
(2s↑s𝑛)) ∈ No
) |
| 87 | | scutcut 27713 |
. . . . . . . . . . . . . 14
⊢ ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} <<s
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))} → (({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) ∈
No ∧ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} <<s
{({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})} ∧ {({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})} <<s
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})) |
| 88 | 72, 87 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) ∈
No ∧ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} <<s
{({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})} ∧ {({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})} <<s
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})) |
| 89 | 88 | simp3d 1144 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})} <<s
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) |
| 90 | | ovex 7382 |
. . . . . . . . . . . . . 14
⊢ ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) ∈
V |
| 91 | 90 | snid 4614 |
. . . . . . . . . . . . 13
⊢ ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) ∈
{({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})} |
| 92 | 91 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) ∈
{({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})}) |
| 93 | | ovex 7382 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈
V |
| 94 | 93 | snid 4614 |
. . . . . . . . . . . . 13
⊢ ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |
| 95 | 94 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) |
| 96 | 89, 92, 95 | ssltsepcd 27706 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) <s
((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))) |
| 97 | 73, 66, 64 | sltadd2d 27911 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) <s
((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
↔ (((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
)))))) |
| 98 | 96, 97 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 99 | 58, 58, 59 | addsassd 27920 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s
))) |
| 100 | 99 | oveq1d 7364 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 𝐴) +s 1s )
-s 1s ) = ((𝐴 +s (𝐴 +s 1s ))
-s 1s )) |
| 101 | 58, 58 | addscld 27894 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 +s 𝐴) ∈ No
) |
| 102 | | pncans 27983 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 +s 𝐴) ∈ No
∧ 1s ∈ No ) → (((𝐴 +s 𝐴) +s 1s )
-s 1s ) = (𝐴 +s 𝐴)) |
| 103 | 101, 45, 102 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 𝐴) +s 1s )
-s 1s ) = (𝐴 +s 𝐴)) |
| 104 | | no2times 28311 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
No → (2s ·s 𝐴) = (𝐴 +s 𝐴)) |
| 105 | 58, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s 𝐴) =
(𝐴 +s 𝐴)) |
| 106 | 103, 105 | eqtr4d 2767 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 𝐴) +s 1s )
-s 1s ) = (2s ·s 𝐴)) |
| 107 | 58, 65, 59 | addsubsd 27993 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 +s (𝐴 +s 1s ))
-s 1s ) = ((𝐴 -s 1s ) +s
(𝐴 +s
1s ))) |
| 108 | 100, 106,
107 | 3eqtr3rd 2773 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s ) +s
(𝐴 +s
1s )) = (2s ·s 𝐴)) |
| 109 | 108 | oveq1d 7364 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s ) +s
(𝐴 +s
1s )) /su (2s↑s(𝑛 +s 1s )))
= ((2s ·s 𝐴) /su
(2s↑s(𝑛 +s 1s
)))) |
| 110 | 60, 65, 63 | pw2divsdird 28342 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s ) +s
(𝐴 +s
1s )) /su (2s↑s(𝑛 +s 1s )))
= (((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 111 | | 1n0s 28247 |
. . . . . . . . . . . . . 14
⊢
1s ∈ ℕ0s |
| 112 | 111 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 1s ∈
ℕ0s) |
| 113 | 58, 61, 112 | pw2divscan4d 28338 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 /su
(2s↑s𝑛)) = (((2s↑s
1s ) ·s 𝐴) /su
(2s↑s(𝑛 +s 1s
)))) |
| 114 | | exps1 28322 |
. . . . . . . . . . . . . . 15
⊢
(2s ∈ No →
(2s↑s 1s ) =
2s) |
| 115 | 2, 114 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(2s↑s 1s ) =
2s |
| 116 | 115 | oveq1i 7359 |
. . . . . . . . . . . . 13
⊢
((2s↑s 1s ) ·s
𝐴) = (2s
·s 𝐴) |
| 117 | 116 | oveq1i 7359 |
. . . . . . . . . . . 12
⊢
(((2s↑s 1s ) ·s
𝐴) /su
(2s↑s(𝑛 +s 1s ))) =
((2s ·s 𝐴) /su
(2s↑s(𝑛 +s 1s
))) |
| 118 | 113, 117 | eqtr2di 2781 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((2s
·s 𝐴)
/su (2s↑s(𝑛 +s 1s ))) = (𝐴 /su
(2s↑s𝑛))) |
| 119 | 109, 110,
118 | 3eqtr3d 2772 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s )))) = (𝐴 /su
(2s↑s𝑛))) |
| 120 | 98, 119 | breqtrd 5118 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
(𝐴 /su
(2s↑s𝑛))) |
| 121 | 74, 86, 120 | ssltsn 27704 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {(𝐴
/su (2s↑s𝑛))}) |
| 122 | 66, 64 | addscomd 27881 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 123 | 122, 119 | eqtrd 2764 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) = (𝐴 /su
(2s↑s𝑛))) |
| 124 | 88 | simp2d 1143 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} <<s
{({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})}) |
| 125 | | ovex 7382 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈
V |
| 126 | 125 | snid 4614 |
. . . . . . . . . . . . 13
⊢ ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈
{((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |
| 127 | 126 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) ∈
{((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) |
| 128 | 124, 127,
92 | ssltsepcd 27706 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) <s
({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})) |
| 129 | 64, 73, 66 | sltadd2d 27911 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) <s
({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) ↔ (((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) <s
(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 130 | 128, 129 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) <s
(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 131 | 123, 130 | eqbrtrrd 5116 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 /su
(2s↑s𝑛)) <s (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 132 | 86, 75, 131 | ssltsn 27704 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {(𝐴 /su
(2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 133 | 60, 61, 112 | pw2divscan4d 28338 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s𝑛)) = (((2s↑s
1s ) ·s (𝐴 -s 1s ))
/su (2s↑s(𝑛 +s 1s
)))) |
| 134 | 115 | oveq1i 7359 |
. . . . . . . . . . . . . . . . 17
⊢
((2s↑s 1s ) ·s
(𝐴 -s
1s )) = (2s ·s (𝐴 -s 1s
)) |
| 135 | | no2times 28311 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 -s 1s )
∈ No → (2s
·s (𝐴
-s 1s )) = ((𝐴 -s 1s ) +s
(𝐴 -s
1s ))) |
| 136 | 60, 135 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s (𝐴
-s 1s )) = ((𝐴 -s 1s ) +s
(𝐴 -s
1s ))) |
| 137 | 134, 136 | eqtrid 2776 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) →
((2s↑s 1s ) ·s (𝐴 -s 1s ))
= ((𝐴 -s
1s ) +s (𝐴 -s 1s
))) |
| 138 | 137 | oveq1d 7364 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) →
(((2s↑s 1s ) ·s (𝐴 -s 1s ))
/su (2s↑s(𝑛 +s 1s ))) = (((𝐴 -s 1s )
+s (𝐴
-s 1s )) /su
(2s↑s(𝑛 +s 1s
)))) |
| 139 | 60, 60, 63 | pw2divsdird 28342 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s ) +s
(𝐴 -s
1s )) /su (2s↑s(𝑛 +s 1s )))
= (((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 140 | 133, 138,
139 | 3eqtrrd 2769 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) = ((𝐴 -s 1s )
/su (2s↑s𝑛))) |
| 141 | 64, 73, 64 | sltadd2d 27911 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) <s
({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) ↔ (((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) <s
(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 142 | 128, 141 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) <s
(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 143 | 140, 142 | eqbrtrrd 5116 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 -s 1s )
/su (2s↑s𝑛)) <s (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 144 | | sltasym 27658 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 -s 1s )
/su (2s↑s𝑛)) ∈ No
∧ (((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ∈
No ) → (((𝐴 -s 1s )
/su (2s↑s𝑛)) <s (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) →
¬ (((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
((𝐴 -s
1s ) /su (2s↑s𝑛)))) |
| 145 | 79, 74, 144 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 -s 1s )
/su (2s↑s𝑛)) <s (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) →
¬ (((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
((𝐴 -s
1s ) /su (2s↑s𝑛)))) |
| 146 | 143, 145 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ¬ (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
((𝐴 -s
1s ) /su (2s↑s𝑛))) |
| 147 | 74, 79 | ssltsnb 27703 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
-s 1s ) /su
(2s↑s𝑛))} ↔ (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
((𝐴 -s
1s ) /su (2s↑s𝑛)))) |
| 148 | 146, 147 | mtbird 325 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ¬ {(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
-s 1s ) /su
(2s↑s𝑛))}) |
| 149 | 148 | intnanrd 489 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
-s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 -s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 150 | | ovex 7382 |
. . . . . . . . . . 11
⊢ ((𝐴 -s 1s )
/su (2s↑s𝑛)) ∈ V |
| 151 | | sneq 4587 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝑂 = ((𝐴 -s 1s )
/su (2s↑s𝑛)) → {𝑥𝑂} = {((𝐴 -s 1s )
/su (2s↑s𝑛))}) |
| 152 | 151 | breq2d 5104 |
. . . . . . . . . . . . 13
⊢ (𝑥𝑂 = ((𝐴 -s 1s )
/su (2s↑s𝑛)) → ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ↔ {(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
-s 1s ) /su
(2s↑s𝑛))})) |
| 153 | 151 | breq1d 5102 |
. . . . . . . . . . . . 13
⊢ (𝑥𝑂 = ((𝐴 -s 1s )
/su (2s↑s𝑛)) → ({𝑥𝑂} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ↔
{((𝐴 -s
1s ) /su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 154 | 152, 153 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑥𝑂 = ((𝐴 -s 1s )
/su (2s↑s𝑛)) → (({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ↔
({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
-s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 -s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}))) |
| 155 | 154 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑥𝑂 = ((𝐴 -s 1s )
/su (2s↑s𝑛)) → (¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ↔
¬ ({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
-s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 -s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}))) |
| 156 | 150, 155 | ralsn 4633 |
. . . . . . . . . 10
⊢
(∀𝑥𝑂 ∈ {((𝐴 -s 1s )
/su (2s↑s𝑛))} ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ↔
¬ ({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
-s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 -s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 157 | 149, 156 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ∀𝑥𝑂 ∈ {((𝐴 -s 1s )
/su (2s↑s𝑛))} ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 158 | 73, 66, 66 | sltadd2d 27911 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) <s
((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
↔ (((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
)))))) |
| 159 | 96, 158 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 160 | 65, 61, 112 | pw2divscan4d 28338 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((𝐴 +s 1s )
/su (2s↑s𝑛)) = (((2s↑s
1s ) ·s (𝐴 +s 1s ))
/su (2s↑s(𝑛 +s 1s
)))) |
| 161 | 115 | oveq1i 7359 |
. . . . . . . . . . . . . . . . 17
⊢
((2s↑s 1s ) ·s
(𝐴 +s
1s )) = (2s ·s (𝐴 +s 1s
)) |
| 162 | | no2times 28311 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 +s 1s )
∈ No → (2s
·s (𝐴
+s 1s )) = ((𝐴 +s 1s ) +s
(𝐴 +s
1s ))) |
| 163 | 65, 162 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s (𝐴
+s 1s )) = ((𝐴 +s 1s ) +s
(𝐴 +s
1s ))) |
| 164 | 161, 163 | eqtrid 2776 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) →
((2s↑s 1s ) ·s (𝐴 +s 1s ))
= ((𝐴 +s
1s ) +s (𝐴 +s 1s
))) |
| 165 | 164 | oveq1d 7364 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) →
(((2s↑s 1s ) ·s (𝐴 +s 1s ))
/su (2s↑s(𝑛 +s 1s ))) = (((𝐴 +s 1s )
+s (𝐴
+s 1s )) /su
(2s↑s(𝑛 +s 1s
)))) |
| 166 | 65, 65, 63 | pw2divsdird 28342 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s ) +s
(𝐴 +s
1s )) /su (2s↑s(𝑛 +s 1s )))
= (((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 167 | 160, 165,
166 | 3eqtrrd 2769 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s )))) = ((𝐴 +s 1s )
/su (2s↑s𝑛))) |
| 168 | 159, 167 | breqtrd 5118 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
((𝐴 +s
1s ) /su (2s↑s𝑛))) |
| 169 | | sltasym 27658 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ∈
No ∧ ((𝐴 +s 1s )
/su (2s↑s𝑛)) ∈ No )
→ ((((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
((𝐴 +s
1s ) /su (2s↑s𝑛)) → ¬ ((𝐴 +s 1s )
/su (2s↑s𝑛)) <s (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 170 | 75, 80, 169 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) <s
((𝐴 +s
1s ) /su (2s↑s𝑛)) → ¬ ((𝐴 +s 1s )
/su (2s↑s𝑛)) <s (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 171 | 168, 170 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ¬ ((𝐴 +s 1s )
/su (2s↑s𝑛)) <s (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 172 | 80, 75 | ssltsnb 27703 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({((𝐴 +s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ↔
((𝐴 +s
1s ) /su (2s↑s𝑛)) <s (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 173 | 171, 172 | mtbird 325 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ¬ {((𝐴 +s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 174 | 173 | intnand 488 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
+s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 +s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 175 | | ovex 7382 |
. . . . . . . . . . 11
⊢ ((𝐴 +s 1s )
/su (2s↑s𝑛)) ∈ V |
| 176 | | sneq 4587 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝑂 = ((𝐴 +s 1s )
/su (2s↑s𝑛)) → {𝑥𝑂} = {((𝐴 +s 1s )
/su (2s↑s𝑛))}) |
| 177 | 176 | breq2d 5104 |
. . . . . . . . . . . . 13
⊢ (𝑥𝑂 = ((𝐴 +s 1s )
/su (2s↑s𝑛)) → ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ↔ {(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
+s 1s ) /su
(2s↑s𝑛))})) |
| 178 | 176 | breq1d 5102 |
. . . . . . . . . . . . 13
⊢ (𝑥𝑂 = ((𝐴 +s 1s )
/su (2s↑s𝑛)) → ({𝑥𝑂} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ↔
{((𝐴 +s
1s ) /su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 179 | 177, 178 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑥𝑂 = ((𝐴 +s 1s )
/su (2s↑s𝑛)) → (({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ↔
({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
+s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 +s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}))) |
| 180 | 179 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑥𝑂 = ((𝐴 +s 1s )
/su (2s↑s𝑛)) → (¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ↔
¬ ({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
+s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 +s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}))) |
| 181 | 175, 180 | ralsn 4633 |
. . . . . . . . . 10
⊢
(∀𝑥𝑂 ∈ {((𝐴 +s 1s )
/su (2s↑s𝑛))} ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ↔
¬ ({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {((𝐴
+s 1s ) /su
(2s↑s𝑛))} ∧ {((𝐴 +s 1s )
/su (2s↑s𝑛))} <<s {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 182 | 174, 181 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ∀𝑥𝑂 ∈ {((𝐴 +s 1s )
/su (2s↑s𝑛))} ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 183 | | ralunb 4148 |
. . . . . . . . 9
⊢
(∀𝑥𝑂 ∈ ({((𝐴 -s 1s )
/su (2s↑s𝑛))} ∪ {((𝐴 +s 1s )
/su (2s↑s𝑛))}) ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ↔
(∀𝑥𝑂 ∈ {((𝐴 -s 1s )
/su (2s↑s𝑛))} ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) ∧
∀𝑥𝑂 ∈ {((𝐴 +s 1s )
/su (2s↑s𝑛))} ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}))) |
| 184 | 157, 182,
183 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ∀𝑥𝑂 ∈ ({((𝐴 -s 1s )
/su (2s↑s𝑛))} ∪ {((𝐴 +s 1s )
/su (2s↑s𝑛))}) ¬ ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}
<<s {𝑥𝑂} ∧ {𝑥𝑂} <<s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 185 | 78, 83, 84, 85, 121, 132, 184 | eqscut3 27736 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} |s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) =
(𝐴 /su
(2s↑s𝑛))) |
| 186 | | no2times 28311 |
. . . . . . . . 9
⊢
(({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) ∈ No → (2s
·s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) =
(({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) +s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 187 | 73, 186 | syl 17 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) =
(({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) +s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 188 | | eqidd 2730 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}) =
({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))})) |
| 189 | 72, 72, 188, 188 | addsunif 27916 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) =
(({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)}) |s
({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)}))) |
| 190 | | oveq1 7356 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) =
(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 191 | 190 | eqeq2d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ↔
𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 192 | 125, 191 | rexsn 4634 |
. . . . . . . . . . . . 13
⊢
(∃𝑏 ∈
{((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ↔
𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 193 | 192 | abbii 2796 |
. . . . . . . . . . . 12
⊢ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} = {𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 194 | 193 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} = {𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 195 | | oveq2 7357 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) +s 𝑏) =
(({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) +s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 196 | 195 | eqeq2d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏) ↔
𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s
)))))) |
| 197 | 125, 196 | rexsn 4634 |
. . . . . . . . . . . . 13
⊢
(∃𝑏 ∈
{((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏) ↔
𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 198 | 73, 64 | addscomd 27881 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 199 | 198 | eqeq2d 2740 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))) ↔
𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 200 | 197, 199 | bitrid 283 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏) ↔
𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 201 | 200 | abbidv 2795 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)} = {𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 202 | 194, 201 | uneq12d 4120 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)}) =
({𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 203 | | unidm 4108 |
. . . . . . . . . . 11
⊢ ({𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) =
{𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 204 | | df-sn 4578 |
. . . . . . . . . . 11
⊢ {(((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} = {𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 205 | 203, 204 | eqtr4i 2755 |
. . . . . . . . . 10
⊢ ({𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ 𝑎 = (((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) =
{(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 206 | 202, 205 | eqtrdi 2780 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)}) =
{(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 207 | | oveq1 7356 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) =
(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 208 | 207 | eqeq2d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ↔
𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 209 | 93, 208 | rexsn 4634 |
. . . . . . . . . . . . 13
⊢
(∃𝑏 ∈
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ↔
𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 210 | 209 | abbii 2796 |
. . . . . . . . . . . 12
⊢ {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} = {𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 211 | 210 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} = {𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 212 | | oveq2 7357 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) +s 𝑏) =
(({((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s
)))} |s {((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}) +s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 213 | 212 | eqeq2d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s ))) →
(𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏) ↔
𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
)))))) |
| 214 | 93, 213 | rexsn 4634 |
. . . . . . . . . . . . 13
⊢
(∃𝑏 ∈
{((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s
)))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏) ↔
𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s
))))) |
| 215 | 73, 66 | addscomd 27881 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s )))) = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 216 | 215 | eqeq2d 2740 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s ((𝐴
+s 1s ) /su
(2s↑s(𝑛 +s 1s )))) ↔
𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 217 | 214, 216 | bitrid 283 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏) ↔
𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 218 | 217 | abbidv 2795 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → {𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)} = {𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 219 | 211, 218 | uneq12d 4120 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)}) =
({𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 220 | | unidm 4108 |
. . . . . . . . . . 11
⊢ ({𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) =
{𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 221 | | df-sn 4578 |
. . . . . . . . . . 11
⊢ {(((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} = {𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 222 | 220, 221 | eqtr4i 2755 |
. . . . . . . . . 10
⊢ ({𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ 𝑎 = (((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))}) =
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))} |
| 223 | 219, 222 | eqtrdi 2780 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)}) =
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))}) |
| 224 | 206, 223 | oveq12d 7367 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (({𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)}) |s
({𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (𝑏 +s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} ∪
{𝑎 ∣ ∃𝑏 ∈ {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}𝑎 = (({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})
+s 𝑏)})) =
({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} |s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 225 | 187, 189,
224 | 3eqtrd 2768 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) =
({(((𝐴 -s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))}))} |s
{(((𝐴 +s
1s ) /su (2s↑s(𝑛 +s 1s )))
+s ({((𝐴
-s 1s ) /su
(2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))})) |
| 226 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 2s ∈ No ) |
| 227 | 226, 58, 63 | pw2divsassd 28337 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((2s
·s 𝐴)
/su (2s↑s(𝑛 +s 1s ))) =
(2s ·s (𝐴 /su
(2s↑s(𝑛 +s 1s
))))) |
| 228 | 117, 227 | eqtr2id 2777 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s (𝐴
/su (2s↑s(𝑛 +s 1s )))) =
(((2s↑s 1s ) ·s 𝐴) /su
(2s↑s(𝑛 +s 1s
)))) |
| 229 | 228, 113 | eqtr4d 2767 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s (𝐴
/su (2s↑s(𝑛 +s 1s )))) = (𝐴 /su
(2s↑s𝑛))) |
| 230 | 185, 225,
229 | 3eqtr4rd 2775 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (2s
·s (𝐴
/su (2s↑s(𝑛 +s 1s )))) =
(2s ·s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 231 | 58, 63 | pw2divscld 28333 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 /su
(2s↑s(𝑛 +s 1s ))) ∈ No ) |
| 232 | | 2ne0s 28314 |
. . . . . . . 8
⊢
2s ≠ 0s |
| 233 | 232 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → 2s ≠ 0s
) |
| 234 | 231, 73, 226, 233 | mulscan1d 28090 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → ((2s
·s (𝐴
/su (2s↑s(𝑛 +s 1s )))) =
(2s ·s ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s )))})) ↔
(𝐴 /su
(2s↑s(𝑛 +s 1s ))) = ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))}))) |
| 235 | 230, 234 | mpbid 232 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0s
∧ 𝐴 ∈
ℤs ∧ (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 /su
(2s↑s(𝑛 +s 1s ))) = ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})) |
| 236 | 235 | 3exp 1119 |
. . . 4
⊢ (𝑛 ∈ ℕ0s
→ (𝐴 ∈
ℤs → ((𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))}) → (𝐴 /su
(2s↑s(𝑛 +s 1s ))) = ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 237 | 236 | a2d 29 |
. . 3
⊢ (𝑛 ∈ ℕ0s
→ ((𝐴 ∈
ℤs → (𝐴 /su
(2s↑s𝑛)) = ({((𝐴 -s 1s )
/su (2s↑s𝑛))} |s {((𝐴 +s 1s )
/su (2s↑s𝑛))})) → (𝐴 ∈ ℤs → (𝐴 /su
(2s↑s(𝑛 +s 1s ))) = ({((𝐴 -s 1s )
/su (2s↑s(𝑛 +s 1s )))} |s {((𝐴 +s 1s )
/su (2s↑s(𝑛 +s 1s
)))})))) |
| 238 | 13, 22, 31, 40, 56, 237 | n0sind 28232 |
. 2
⊢ (𝑁 ∈ ℕ0s
→ (𝐴 ∈
ℤs → (𝐴 /su
(2s↑s𝑁)) = ({((𝐴 -s 1s )
/su (2s↑s𝑁))} |s {((𝐴 +s 1s )
/su (2s↑s𝑁))}))) |
| 239 | 238 | impcom 407 |
1
⊢ ((𝐴 ∈ ℤs
∧ 𝑁 ∈
ℕ0s) → (𝐴 /su
(2s↑s𝑁)) = ({((𝐴 -s 1s )
/su (2s↑s𝑁))} |s {((𝐴 +s 1s )
/su (2s↑s𝑁))})) |