Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimcclem Structured version   Visualization version   GIF version

Theorem smfpimcclem 43074
Description: Lemma for smfpimcc 43075 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfpimcclem.n 𝑛𝜑
smfpimcclem.z 𝑍𝑉
smfpimcclem.s (𝜑𝑆𝑊)
smfpimcclem.c ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
smfpimcclem.h 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
Assertion
Ref Expression
smfpimcclem (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Distinct variable groups:   𝐴,   𝐴,𝑠,𝑦   𝐶,𝑠,𝑦   ,𝐹   𝐹,𝑠,𝑦   ,𝐻   𝑆,,𝑛   𝑆,𝑠,𝑦,𝑛   ,𝑍,𝑛   𝑦,𝑍   𝜑,𝑦
Allowed substitution hints:   𝜑(,𝑛,𝑠)   𝐴(𝑛)   𝐶(,𝑛)   𝐹(𝑛)   𝐻(𝑦,𝑛,𝑠)   𝑉(𝑦,,𝑛,𝑠)   𝑊(𝑦,,𝑛,𝑠)   𝑍(𝑠)

Proof of Theorem smfpimcclem
StepHypRef Expression
1 smfpimcclem.n . . 3 𝑛𝜑
2 nfcv 2977 . . . . 5 𝑠𝑆
32ssrab2f 41376 . . . 4 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ⊆ 𝑆
4 eqid 2821 . . . . . . 7 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
5 smfpimcclem.s . . . . . . 7 (𝜑𝑆𝑊)
64, 5rabexd 5229 . . . . . 6 (𝜑 → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
76adantr 483 . . . . 5 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
8 simpl 485 . . . . . 6 ((𝜑𝑛𝑍) → 𝜑)
9 simpr 487 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
10 eqid 2821 . . . . . . . 8 (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) = (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1110elrnmpt1 5825 . . . . . . 7 ((𝑛𝑍 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
129, 7, 11syl2anc 586 . . . . . 6 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
138, 12jca 514 . . . . 5 ((𝜑𝑛𝑍) → (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
14 eleq1 2900 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ↔ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
1514anbi2d 630 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ↔ (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))))
16 fveq2 6665 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝐶𝑦) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
17 id 22 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1816, 17eleq12d 2907 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝐶𝑦) ∈ 𝑦 ↔ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
1915, 18imbi12d 347 . . . . . 6 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
20 smfpimcclem.c . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
2119, 20vtoclg 3568 . . . . 5 ({𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V → ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
227, 13, 21sylc 65 . . . 4 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
233, 22sseldi 3965 . . 3 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆)
24 smfpimcclem.h . . 3 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
251, 23, 24fmptdf 6876 . 2 (𝜑𝐻:𝑍𝑆)
26 nfcv 2977 . . . . . . . . 9 𝑠𝐶
27 nfrab1 3385 . . . . . . . . 9 𝑠{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
2826, 27nffv 6675 . . . . . . . 8 𝑠(𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
29 nfcv 2977 . . . . . . . . 9 𝑠((𝐹𝑛) “ 𝐴)
30 nfcv 2977 . . . . . . . . . 10 𝑠dom (𝐹𝑛)
3128, 30nfin 4193 . . . . . . . . 9 𝑠((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
3229, 31nfeq 2991 . . . . . . . 8 𝑠((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
33 ineq1 4181 . . . . . . . . 9 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (𝑠 ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3433eqeq2d 2832 . . . . . . . 8 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3528, 2, 32, 34elrabf 3676 . . . . . . 7 ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ↔ ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3622, 35sylib 220 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3736simprd 498 . . . . 5 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3824a1i 11 . . . . . . 7 (𝜑𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
3922elexd 3515 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ V)
4038, 39fvmpt2d 6776 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
4140ineq1d 4188 . . . . 5 ((𝜑𝑛𝑍) → ((𝐻𝑛) ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
4237, 41eqtr4d 2859 . . . 4 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
4342ex 415 . . 3 (𝜑 → (𝑛𝑍 → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
441, 43ralrimi 3216 . 2 (𝜑 → ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
45 smfpimcclem.z . . . . . 6 𝑍𝑉
4645elexi 3514 . . . . 5 𝑍 ∈ V
4746mptex 6980 . . . 4 (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ∈ V
4824, 47eqeltri 2909 . . 3 𝐻 ∈ V
49 feq1 6490 . . . 4 ( = 𝐻 → (:𝑍𝑆𝐻:𝑍𝑆))
50 nfcv 2977 . . . . . 6 𝑛
51 nfmpt1 5157 . . . . . . 7 𝑛(𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
5224, 51nfcxfr 2975 . . . . . 6 𝑛𝐻
5350, 52nfeq 2991 . . . . 5 𝑛 = 𝐻
54 fveq1 6664 . . . . . . 7 ( = 𝐻 → (𝑛) = (𝐻𝑛))
5554ineq1d 4188 . . . . . 6 ( = 𝐻 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
5655eqeq2d 2832 . . . . 5 ( = 𝐻 → (((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5753, 56ralbid 3231 . . . 4 ( = 𝐻 → (∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5849, 57anbi12d 632 . . 3 ( = 𝐻 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))) ↔ (𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))))
5948, 58spcev 3607 . 2 ((𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))) → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
6025, 44, 59syl2anc 586 1 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wex 1776  wnf 1780  wcel 2110  wral 3138  {crab 3142  Vcvv 3495  cin 3935  cmpt 5139  ccnv 5549  dom cdm 5550  ran crn 5551  cima 5553  wf 6346  cfv 6350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358
This theorem is referenced by:  smfpimcc  43075
  Copyright terms: Public domain W3C validator