Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimcclem Structured version   Visualization version   GIF version

Theorem smfpimcclem 41807
Description: Lemma for smfpimcc 41808 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfpimcclem.n 𝑛𝜑
smfpimcclem.z 𝑍𝑉
smfpimcclem.s (𝜑𝑆𝑊)
smfpimcclem.c ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
smfpimcclem.h 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
Assertion
Ref Expression
smfpimcclem (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Distinct variable groups:   𝐴,   𝐴,𝑠,𝑦   𝐶,𝑠,𝑦   ,𝐹   𝐹,𝑠,𝑦   ,𝐻   𝑆,,𝑛   𝑆,𝑠,𝑦,𝑛   ,𝑍,𝑛   𝑦,𝑍   𝜑,𝑦
Allowed substitution hints:   𝜑(,𝑛,𝑠)   𝐴(𝑛)   𝐶(,𝑛)   𝐹(𝑛)   𝐻(𝑦,𝑛,𝑠)   𝑉(𝑦,,𝑛,𝑠)   𝑊(𝑦,,𝑛,𝑠)   𝑍(𝑠)

Proof of Theorem smfpimcclem
StepHypRef Expression
1 smfpimcclem.n . . 3 𝑛𝜑
2 nfcv 2969 . . . . 5 𝑠𝑆
32ssrab2f 40115 . . . 4 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ⊆ 𝑆
4 eqid 2825 . . . . . . 7 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
5 smfpimcclem.s . . . . . . 7 (𝜑𝑆𝑊)
64, 5rabexd 5038 . . . . . 6 (𝜑 → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
76adantr 474 . . . . 5 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
8 simpl 476 . . . . . 6 ((𝜑𝑛𝑍) → 𝜑)
9 simpr 479 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
10 eqid 2825 . . . . . . . 8 (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) = (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1110elrnmpt1 5607 . . . . . . 7 ((𝑛𝑍 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
129, 7, 11syl2anc 581 . . . . . 6 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
138, 12jca 509 . . . . 5 ((𝜑𝑛𝑍) → (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
14 eleq1 2894 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ↔ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
1514anbi2d 624 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ↔ (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))))
16 fveq2 6433 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝐶𝑦) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
17 id 22 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1816, 17eleq12d 2900 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝐶𝑦) ∈ 𝑦 ↔ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
1915, 18imbi12d 336 . . . . . 6 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
20 smfpimcclem.c . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
2119, 20vtoclg 3482 . . . . 5 ({𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V → ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
227, 13, 21sylc 65 . . . 4 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
233, 22sseldi 3825 . . 3 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆)
24 smfpimcclem.h . . 3 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
251, 23, 24fmptdf 6636 . 2 (𝜑𝐻:𝑍𝑆)
26 nfcv 2969 . . . . . . . . 9 𝑠𝐶
27 nfrab1 3333 . . . . . . . . 9 𝑠{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
2826, 27nffv 6443 . . . . . . . 8 𝑠(𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
29 nfcv 2969 . . . . . . . . 9 𝑠((𝐹𝑛) “ 𝐴)
30 nfcv 2969 . . . . . . . . . 10 𝑠dom (𝐹𝑛)
3128, 30nfin 4045 . . . . . . . . 9 𝑠((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
3229, 31nfeq 2981 . . . . . . . 8 𝑠((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
33 ineq1 4034 . . . . . . . . 9 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (𝑠 ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3433eqeq2d 2835 . . . . . . . 8 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3528, 2, 32, 34elrabf 3581 . . . . . . 7 ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ↔ ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3622, 35sylib 210 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3736simprd 491 . . . . 5 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3824a1i 11 . . . . . . 7 (𝜑𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
3922elexd 3431 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ V)
4038, 39fvmpt2d 6540 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
4140ineq1d 4040 . . . . 5 ((𝜑𝑛𝑍) → ((𝐻𝑛) ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
4237, 41eqtr4d 2864 . . . 4 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
4342ex 403 . . 3 (𝜑 → (𝑛𝑍 → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
441, 43ralrimi 3166 . 2 (𝜑 → ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
45 smfpimcclem.z . . . . . 6 𝑍𝑉
4645elexi 3430 . . . . 5 𝑍 ∈ V
4746mptex 6742 . . . 4 (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ∈ V
4824, 47eqeltri 2902 . . 3 𝐻 ∈ V
49 feq1 6259 . . . 4 ( = 𝐻 → (:𝑍𝑆𝐻:𝑍𝑆))
50 nfcv 2969 . . . . . 6 𝑛
51 nfmpt1 4970 . . . . . . 7 𝑛(𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
5224, 51nfcxfr 2967 . . . . . 6 𝑛𝐻
5350, 52nfeq 2981 . . . . 5 𝑛 = 𝐻
54 fveq1 6432 . . . . . . 7 ( = 𝐻 → (𝑛) = (𝐻𝑛))
5554ineq1d 4040 . . . . . 6 ( = 𝐻 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
5655eqeq2d 2835 . . . . 5 ( = 𝐻 → (((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5753, 56ralbid 3192 . . . 4 ( = 𝐻 → (∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5849, 57anbi12d 626 . . 3 ( = 𝐻 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))) ↔ (𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))))
5948, 58spcev 3517 . 2 ((𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))) → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
6025, 44, 59syl2anc 581 1 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wex 1880  wnf 1884  wcel 2166  wral 3117  {crab 3121  Vcvv 3414  cin 3797  cmpt 4952  ccnv 5341  dom cdm 5342  ran crn 5343  cima 5345  wf 6119  cfv 6123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131
This theorem is referenced by:  smfpimcc  41808
  Copyright terms: Public domain W3C validator