Proof of Theorem smfpimcclem
Step | Hyp | Ref
| Expression |
1 | | smfpimcclem.n |
. . 3
⊢
Ⅎ𝑛𝜑 |
2 | | nfcv 2920 |
. . . . 5
⊢
Ⅎ𝑠𝑆 |
3 | 2 | ssrab2f 42118 |
. . . 4
⊢ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ⊆ 𝑆 |
4 | | eqid 2759 |
. . . . . . 7
⊢ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} |
5 | | smfpimcclem.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
6 | 4, 5 | rabexd 5204 |
. . . . . 6
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V) |
7 | 6 | adantr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V) |
8 | | simpl 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝜑) |
9 | | simpr 489 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
10 | | eqid 2759 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) = (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
11 | 10 | elrnmpt1 5800 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝑍 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
12 | 9, 7, 11 | syl2anc 588 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
13 | 8, 12 | jca 516 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
14 | | eleq1 2840 |
. . . . . . . 8
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ↔ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
15 | 14 | anbi2d 632 |
. . . . . . 7
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ↔ (𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})))) |
16 | | fveq2 6659 |
. . . . . . . 8
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → (𝐶‘𝑦) = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
17 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
18 | 16, 17 | eleq12d 2847 |
. . . . . . 7
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → ((𝐶‘𝑦) ∈ 𝑦 ↔ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
19 | 15, 18 | imbi12d 349 |
. . . . . 6
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → (((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
20 | | smfpimcclem.c |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) |
21 | 19, 20 | vtoclg 3486 |
. . . . 5
⊢ ({𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V → ((𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
22 | 7, 13, 21 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
23 | 3, 22 | sseldi 3891 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ 𝑆) |
24 | | smfpimcclem.h |
. . 3
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
25 | 1, 23, 24 | fmptdf 6873 |
. 2
⊢ (𝜑 → 𝐻:𝑍⟶𝑆) |
26 | | nfcv 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑠𝐶 |
27 | | nfrab1 3303 |
. . . . . . . . 9
⊢
Ⅎ𝑠{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} |
28 | 26, 27 | nffv 6669 |
. . . . . . . 8
⊢
Ⅎ𝑠(𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
29 | | nfcv 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑠(◡(𝐹‘𝑛) “ 𝐴) |
30 | | nfcv 2920 |
. . . . . . . . . 10
⊢
Ⅎ𝑠dom
(𝐹‘𝑛) |
31 | 28, 30 | nfin 4122 |
. . . . . . . . 9
⊢
Ⅎ𝑠((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)) |
32 | 29, 31 | nfeq 2933 |
. . . . . . . 8
⊢
Ⅎ𝑠(◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)) |
33 | | ineq1 4110 |
. . . . . . . . 9
⊢ (𝑠 = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) → (𝑠 ∩ dom (𝐹‘𝑛)) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛))) |
34 | 33 | eqeq2d 2770 |
. . . . . . . 8
⊢ (𝑠 = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) → ((◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛)) ↔ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)))) |
35 | 28, 2, 32, 34 | elrabf 3599 |
. . . . . . 7
⊢ ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ↔ ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ 𝑆 ∧ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)))) |
36 | 22, 35 | sylib 221 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ 𝑆 ∧ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)))) |
37 | 36 | simprd 500 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛))) |
38 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
39 | 22 | elexd 3431 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ V) |
40 | 38, 39 | fvmpt2d 6773 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
41 | 40 | ineq1d 4117 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛))) |
42 | 37, 41 | eqtr4d 2797 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
43 | 42 | ex 417 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)))) |
44 | 1, 43 | ralrimi 3145 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
45 | | smfpimcclem.z |
. . . . . 6
⊢ 𝑍 ∈ 𝑉 |
46 | 45 | elexi 3430 |
. . . . 5
⊢ 𝑍 ∈ V |
47 | 46 | mptex 6978 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ∈ V |
48 | 24, 47 | eqeltri 2849 |
. . 3
⊢ 𝐻 ∈ V |
49 | | feq1 6480 |
. . . 4
⊢ (ℎ = 𝐻 → (ℎ:𝑍⟶𝑆 ↔ 𝐻:𝑍⟶𝑆)) |
50 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑛ℎ |
51 | | nfmpt1 5131 |
. . . . . . 7
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
52 | 24, 51 | nfcxfr 2918 |
. . . . . 6
⊢
Ⅎ𝑛𝐻 |
53 | 50, 52 | nfeq 2933 |
. . . . 5
⊢
Ⅎ𝑛 ℎ = 𝐻 |
54 | | fveq1 6658 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (ℎ‘𝑛) = (𝐻‘𝑛)) |
55 | 54 | ineq1d 4117 |
. . . . . 6
⊢ (ℎ = 𝐻 → ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
56 | 55 | eqeq2d 2770 |
. . . . 5
⊢ (ℎ = 𝐻 → ((◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)) ↔ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)))) |
57 | 53, 56 | ralbid 3160 |
. . . 4
⊢ (ℎ = 𝐻 → (∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)) ↔ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)))) |
58 | 49, 57 | anbi12d 634 |
. . 3
⊢ (ℎ = 𝐻 → ((ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛))) ↔ (𝐻:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))))) |
59 | 48, 58 | spcev 3526 |
. 2
⊢ ((𝐻:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |
60 | 25, 44, 59 | syl2anc 588 |
1
⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |