Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimcclem Structured version   Visualization version   GIF version

Theorem smfpimcclem 45823
Description: Lemma for smfpimcc 45824 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfpimcclem.n 𝑛𝜑
smfpimcclem.z 𝑍𝑉
smfpimcclem.s (𝜑𝑆𝑊)
smfpimcclem.c ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
smfpimcclem.h 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
Assertion
Ref Expression
smfpimcclem (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Distinct variable groups:   𝐴,   𝐴,𝑠,𝑦   𝐶,𝑠,𝑦   ,𝐹   𝐹,𝑠,𝑦   ,𝐻   𝑆,,𝑛   𝑆,𝑠,𝑦,𝑛   ,𝑍,𝑛   𝑦,𝑍   𝜑,𝑦
Allowed substitution hints:   𝜑(,𝑛,𝑠)   𝐴(𝑛)   𝐶(,𝑛)   𝐹(𝑛)   𝐻(𝑦,𝑛,𝑠)   𝑉(𝑦,,𝑛,𝑠)   𝑊(𝑦,,𝑛,𝑠)   𝑍(𝑠)

Proof of Theorem smfpimcclem
StepHypRef Expression
1 smfpimcclem.n . . 3 𝑛𝜑
2 nfcv 2902 . . . . 5 𝑠𝑆
32ssrab2f 44109 . . . 4 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ⊆ 𝑆
4 eqid 2731 . . . . . . 7 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
5 smfpimcclem.s . . . . . . 7 (𝜑𝑆𝑊)
64, 5rabexd 5334 . . . . . 6 (𝜑 → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
76adantr 480 . . . . 5 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
8 simpl 482 . . . . . 6 ((𝜑𝑛𝑍) → 𝜑)
9 simpr 484 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
10 eqid 2731 . . . . . . . 8 (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) = (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1110elrnmpt1 5958 . . . . . . 7 ((𝑛𝑍 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
129, 7, 11syl2anc 583 . . . . . 6 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
138, 12jca 511 . . . . 5 ((𝜑𝑛𝑍) → (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
14 eleq1 2820 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ↔ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
1514anbi2d 628 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ↔ (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))))
16 fveq2 6892 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝐶𝑦) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
17 id 22 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1816, 17eleq12d 2826 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝐶𝑦) ∈ 𝑦 ↔ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
1915, 18imbi12d 343 . . . . . 6 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
20 smfpimcclem.c . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
2119, 20vtoclg 3557 . . . . 5 ({𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V → ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
227, 13, 21sylc 65 . . . 4 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
233, 22sselid 3981 . . 3 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆)
24 smfpimcclem.h . . 3 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
251, 23, 24fmptdf 7119 . 2 (𝜑𝐻:𝑍𝑆)
26 nfcv 2902 . . . . . . . . 9 𝑠𝐶
27 nfrab1 3450 . . . . . . . . 9 𝑠{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
2826, 27nffv 6902 . . . . . . . 8 𝑠(𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
29 nfcv 2902 . . . . . . . . 9 𝑠((𝐹𝑛) “ 𝐴)
30 nfcv 2902 . . . . . . . . . 10 𝑠dom (𝐹𝑛)
3128, 30nfin 4217 . . . . . . . . 9 𝑠((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
3229, 31nfeq 2915 . . . . . . . 8 𝑠((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
33 ineq1 4206 . . . . . . . . 9 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (𝑠 ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3433eqeq2d 2742 . . . . . . . 8 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3528, 2, 32, 34elrabf 3680 . . . . . . 7 ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ↔ ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3622, 35sylib 217 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3736simprd 495 . . . . 5 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3824a1i 11 . . . . . . 7 (𝜑𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
3922elexd 3494 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ V)
4038, 39fvmpt2d 7012 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
4140ineq1d 4212 . . . . 5 ((𝜑𝑛𝑍) → ((𝐻𝑛) ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
4237, 41eqtr4d 2774 . . . 4 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
4342ex 412 . . 3 (𝜑 → (𝑛𝑍 → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
441, 43ralrimi 3253 . 2 (𝜑 → ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
45 smfpimcclem.z . . . . . 6 𝑍𝑉
4645elexi 3493 . . . . 5 𝑍 ∈ V
4746mptex 7228 . . . 4 (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ∈ V
4824, 47eqeltri 2828 . . 3 𝐻 ∈ V
49 feq1 6699 . . . 4 ( = 𝐻 → (:𝑍𝑆𝐻:𝑍𝑆))
50 nfcv 2902 . . . . . 6 𝑛
51 nfmpt1 5257 . . . . . . 7 𝑛(𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
5224, 51nfcxfr 2900 . . . . . 6 𝑛𝐻
5350, 52nfeq 2915 . . . . 5 𝑛 = 𝐻
54 fveq1 6891 . . . . . . 7 ( = 𝐻 → (𝑛) = (𝐻𝑛))
5554ineq1d 4212 . . . . . 6 ( = 𝐻 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
5655eqeq2d 2742 . . . . 5 ( = 𝐻 → (((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5753, 56ralbid 3269 . . . 4 ( = 𝐻 → (∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5849, 57anbi12d 630 . . 3 ( = 𝐻 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))) ↔ (𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))))
5948, 58spcev 3597 . 2 ((𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))) → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
6025, 44, 59syl2anc 583 1 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1780  wnf 1784  wcel 2105  wral 3060  {crab 3431  Vcvv 3473  cin 3948  cmpt 5232  ccnv 5676  dom cdm 5677  ran crn 5678  cima 5680  wf 6540  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by:  smfpimcc  45824
  Copyright terms: Public domain W3C validator