Proof of Theorem smfpimcclem
| Step | Hyp | Ref
| Expression |
| 1 | | smfpimcclem.n |
. . 3
⊢
Ⅎ𝑛𝜑 |
| 2 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑠𝑆 |
| 3 | 2 | ssrab2f 45122 |
. . . 4
⊢ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ⊆ 𝑆 |
| 4 | | eqid 2737 |
. . . . . . 7
⊢ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} |
| 5 | | smfpimcclem.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| 6 | 4, 5 | rabexd 5340 |
. . . . . 6
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V) |
| 8 | | simpl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝜑) |
| 9 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
| 10 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) = (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
| 11 | 10 | elrnmpt1 5971 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝑍 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 12 | 9, 7, 11 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 13 | 8, 12 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
| 14 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → (𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ↔ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
| 15 | 14 | anbi2d 630 |
. . . . . . 7
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ↔ (𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})))) |
| 16 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → (𝐶‘𝑦) = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 17 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → 𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
| 18 | 16, 17 | eleq12d 2835 |
. . . . . . 7
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → ((𝐶‘𝑦) ∈ 𝑦 ↔ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 19 | 15, 18 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} → (((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
| 20 | | smfpimcclem.c |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) |
| 21 | 19, 20 | vtoclg 3554 |
. . . . 5
⊢ ({𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ V → ((𝜑 ∧ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 22 | 7, 13, 21 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
| 23 | 3, 22 | sselid 3981 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ 𝑆) |
| 24 | | smfpimcclem.h |
. . 3
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 25 | 1, 23, 24 | fmptdf 7137 |
. 2
⊢ (𝜑 → 𝐻:𝑍⟶𝑆) |
| 26 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑠𝐶 |
| 27 | | nfrab1 3457 |
. . . . . . . . 9
⊢
Ⅎ𝑠{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} |
| 28 | 26, 27 | nffv 6916 |
. . . . . . . 8
⊢
Ⅎ𝑠(𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) |
| 29 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑠(◡(𝐹‘𝑛) “ 𝐴) |
| 30 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑠dom
(𝐹‘𝑛) |
| 31 | 28, 30 | nfin 4224 |
. . . . . . . . 9
⊢
Ⅎ𝑠((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)) |
| 32 | 29, 31 | nfeq 2919 |
. . . . . . . 8
⊢
Ⅎ𝑠(◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)) |
| 33 | | ineq1 4213 |
. . . . . . . . 9
⊢ (𝑠 = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) → (𝑠 ∩ dom (𝐹‘𝑛)) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛))) |
| 34 | 33 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑠 = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) → ((◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛)) ↔ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)))) |
| 35 | 28, 2, 32, 34 | elrabf 3688 |
. . . . . . 7
⊢ ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))} ↔ ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ 𝑆 ∧ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)))) |
| 36 | 22, 35 | sylib 218 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ 𝑆 ∧ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛)))) |
| 37 | 36 | simprd 495 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ 𝐴) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛))) |
| 38 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}))) |
| 39 | 22 | elexd 3504 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∈ V) |
| 40 | 38, 39 | fvmpt2d 7029 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 41 | 40 | ineq1d 4219 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)) = ((𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))}) ∩ dom (𝐹‘𝑛))) |
| 42 | 37, 41 | eqtr4d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
| 43 | 42 | ex 412 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)))) |
| 44 | 1, 43 | ralrimi 3257 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
| 45 | | smfpimcclem.z |
. . . . . 6
⊢ 𝑍 ∈ 𝑉 |
| 46 | 45 | elexi 3503 |
. . . . 5
⊢ 𝑍 ∈ V |
| 47 | 46 | mptex 7243 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ∈ V |
| 48 | 24, 47 | eqeltri 2837 |
. . 3
⊢ 𝐻 ∈ V |
| 49 | | feq1 6716 |
. . . 4
⊢ (ℎ = 𝐻 → (ℎ:𝑍⟶𝑆 ↔ 𝐻:𝑍⟶𝑆)) |
| 50 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑛ℎ |
| 51 | | nfmpt1 5250 |
. . . . . . 7
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) |
| 52 | 24, 51 | nfcxfr 2903 |
. . . . . 6
⊢
Ⅎ𝑛𝐻 |
| 53 | 50, 52 | nfeq 2919 |
. . . . 5
⊢
Ⅎ𝑛 ℎ = 𝐻 |
| 54 | | fveq1 6905 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (ℎ‘𝑛) = (𝐻‘𝑛)) |
| 55 | 54 | ineq1d 4219 |
. . . . . 6
⊢ (ℎ = 𝐻 → ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) |
| 56 | 55 | eqeq2d 2748 |
. . . . 5
⊢ (ℎ = 𝐻 → ((◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)) ↔ (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)))) |
| 57 | 53, 56 | ralbid 3273 |
. . . 4
⊢ (ℎ = 𝐻 → (∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)) ↔ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛)))) |
| 58 | 49, 57 | anbi12d 632 |
. . 3
⊢ (ℎ = 𝐻 → ((ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛))) ↔ (𝐻:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))))) |
| 59 | 48, 58 | spcev 3606 |
. 2
⊢ ((𝐻:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |
| 60 | 25, 44, 59 | syl2anc 584 |
1
⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) |