Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimcclem Structured version   Visualization version   GIF version

Theorem smfpimcclem 42944
Description: Lemma for smfpimcc 42945 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfpimcclem.n 𝑛𝜑
smfpimcclem.z 𝑍𝑉
smfpimcclem.s (𝜑𝑆𝑊)
smfpimcclem.c ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
smfpimcclem.h 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
Assertion
Ref Expression
smfpimcclem (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Distinct variable groups:   𝐴,   𝐴,𝑠,𝑦   𝐶,𝑠,𝑦   ,𝐹   𝐹,𝑠,𝑦   ,𝐻   𝑆,,𝑛   𝑆,𝑠,𝑦,𝑛   ,𝑍,𝑛   𝑦,𝑍   𝜑,𝑦
Allowed substitution hints:   𝜑(,𝑛,𝑠)   𝐴(𝑛)   𝐶(,𝑛)   𝐹(𝑛)   𝐻(𝑦,𝑛,𝑠)   𝑉(𝑦,,𝑛,𝑠)   𝑊(𝑦,,𝑛,𝑠)   𝑍(𝑠)

Proof of Theorem smfpimcclem
StepHypRef Expression
1 smfpimcclem.n . . 3 𝑛𝜑
2 nfcv 2981 . . . . 5 𝑠𝑆
32ssrab2f 41246 . . . 4 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ⊆ 𝑆
4 eqid 2824 . . . . . . 7 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
5 smfpimcclem.s . . . . . . 7 (𝜑𝑆𝑊)
64, 5rabexd 5232 . . . . . 6 (𝜑 → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
76adantr 481 . . . . 5 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
8 simpl 483 . . . . . 6 ((𝜑𝑛𝑍) → 𝜑)
9 simpr 485 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
10 eqid 2824 . . . . . . . 8 (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) = (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1110elrnmpt1 5828 . . . . . . 7 ((𝑛𝑍 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
129, 7, 11syl2anc 584 . . . . . 6 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
138, 12jca 512 . . . . 5 ((𝜑𝑛𝑍) → (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
14 eleq1 2904 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ↔ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
1514anbi2d 628 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ↔ (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))))
16 fveq2 6666 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝐶𝑦) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
17 id 22 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1816, 17eleq12d 2911 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝐶𝑦) ∈ 𝑦 ↔ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
1915, 18imbi12d 346 . . . . . 6 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
20 smfpimcclem.c . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
2119, 20vtoclg 3572 . . . . 5 ({𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V → ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
227, 13, 21sylc 65 . . . 4 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
233, 22sseldi 3968 . . 3 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆)
24 smfpimcclem.h . . 3 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
251, 23, 24fmptdf 6876 . 2 (𝜑𝐻:𝑍𝑆)
26 nfcv 2981 . . . . . . . . 9 𝑠𝐶
27 nfrab1 3389 . . . . . . . . 9 𝑠{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
2826, 27nffv 6676 . . . . . . . 8 𝑠(𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
29 nfcv 2981 . . . . . . . . 9 𝑠((𝐹𝑛) “ 𝐴)
30 nfcv 2981 . . . . . . . . . 10 𝑠dom (𝐹𝑛)
3128, 30nfin 4196 . . . . . . . . 9 𝑠((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
3229, 31nfeq 2995 . . . . . . . 8 𝑠((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
33 ineq1 4184 . . . . . . . . 9 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (𝑠 ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3433eqeq2d 2835 . . . . . . . 8 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3528, 2, 32, 34elrabf 3679 . . . . . . 7 ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ↔ ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3622, 35sylib 219 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3736simprd 496 . . . . 5 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3824a1i 11 . . . . . . 7 (𝜑𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
3922elexd 3519 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ V)
4038, 39fvmpt2d 6776 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
4140ineq1d 4191 . . . . 5 ((𝜑𝑛𝑍) → ((𝐻𝑛) ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
4237, 41eqtr4d 2863 . . . 4 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
4342ex 413 . . 3 (𝜑 → (𝑛𝑍 → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
441, 43ralrimi 3220 . 2 (𝜑 → ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
45 smfpimcclem.z . . . . . 6 𝑍𝑉
4645elexi 3518 . . . . 5 𝑍 ∈ V
4746mptex 6984 . . . 4 (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ∈ V
4824, 47eqeltri 2913 . . 3 𝐻 ∈ V
49 feq1 6491 . . . 4 ( = 𝐻 → (:𝑍𝑆𝐻:𝑍𝑆))
50 nfcv 2981 . . . . . 6 𝑛
51 nfmpt1 5160 . . . . . . 7 𝑛(𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
5224, 51nfcxfr 2979 . . . . . 6 𝑛𝐻
5350, 52nfeq 2995 . . . . 5 𝑛 = 𝐻
54 fveq1 6665 . . . . . . 7 ( = 𝐻 → (𝑛) = (𝐻𝑛))
5554ineq1d 4191 . . . . . 6 ( = 𝐻 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
5655eqeq2d 2835 . . . . 5 ( = 𝐻 → (((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5753, 56ralbid 3235 . . . 4 ( = 𝐻 → (∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5849, 57anbi12d 630 . . 3 ( = 𝐻 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))) ↔ (𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))))
5948, 58spcev 3610 . 2 ((𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))) → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
6025, 44, 59syl2anc 584 1 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wex 1773  wnf 1777  wcel 2106  wral 3142  {crab 3146  Vcvv 3499  cin 3938  cmpt 5142  ccnv 5552  dom cdm 5553  ran crn 5554  cima 5556  wf 6347  cfv 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359
This theorem is referenced by:  smfpimcc  42945
  Copyright terms: Public domain W3C validator