MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegcl Structured version   Visualization version   GIF version

Theorem mdegcl 24266
Description: Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegcl.d 𝐷 = (𝐼 mDeg 𝑅)
mdegcl.p 𝑃 = (𝐼 mPoly 𝑅)
mdegcl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
mdegcl (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))

Proof of Theorem mdegcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegcl.d . . 3 𝐷 = (𝐼 mDeg 𝑅)
2 mdegcl.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mdegcl.b . . 3 𝐵 = (Base‘𝑃)
4 eqid 2778 . . 3 (0g𝑅) = (0g𝑅)
5 eqid 2778 . . 3 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 eqid 2778 . . 3 (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
71, 2, 3, 4, 5, 6mdegval 24260 . 2 (𝐹𝐵 → (𝐷𝐹) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ))
8 supeq1 8639 . . . 4 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) = ∅ → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
98eleq1d 2844 . . 3 (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) = ∅ → (sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}) ↔ sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞})))
10 imassrn 5731 . . . . . . 7 ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ran (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
112, 3mplrcl 19886 . . . . . . . 8 (𝐹𝐵𝐼 ∈ V)
125, 6tdeglem1 24255 . . . . . . . 8 (𝐼 ∈ V → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
13 frn 6297 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ⊆ ℕ0)
1411, 12, 133syl 18 . . . . . . 7 (𝐹𝐵 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ⊆ ℕ0)
1510, 14syl5ss 3832 . . . . . 6 (𝐹𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℕ0)
1615adantr 474 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℕ0)
17 ssun1 3999 . . . . 5 0 ⊆ (ℕ0 ∪ {-∞})
1816, 17syl6ss 3833 . . . 4 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ (ℕ0 ∪ {-∞}))
19 ffun 6294 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)))
2011, 12, 193syl 18 . . . . . . 7 (𝐹𝐵 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)))
21 id 22 . . . . . . . . 9 (𝐹𝐵𝐹𝐵)
22 reldmmpl 19824 . . . . . . . . . . 11 Rel dom mPoly
2322, 2, 3elbasov 16317 . . . . . . . . . 10 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2423simprd 491 . . . . . . . . 9 (𝐹𝐵𝑅 ∈ V)
252, 3, 4, 21, 24mplelsfi 19887 . . . . . . . 8 (𝐹𝐵𝐹 finSupp (0g𝑅))
2625fsuppimpd 8570 . . . . . . 7 (𝐹𝐵 → (𝐹 supp (0g𝑅)) ∈ Fin)
27 imafi 8547 . . . . . . 7 ((Fun (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ∧ (𝐹 supp (0g𝑅)) ∈ Fin) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
2820, 26, 27syl2anc 579 . . . . . 6 (𝐹𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
2928adantr 474 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
30 simpr 479 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅)
31 nn0ssre 11646 . . . . . . 7 0 ⊆ ℝ
32 ressxr 10420 . . . . . . 7 ℝ ⊆ ℝ*
3331, 32sstri 3830 . . . . . 6 0 ⊆ ℝ*
3416, 33syl6ss 3833 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*)
35 xrltso 12284 . . . . . 6 < Or ℝ*
36 fisupcl 8663 . . . . . 6 (( < Or ℝ* ∧ (((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*)) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3735, 36mpan 680 . . . . 5 ((((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3829, 30, 34, 37syl3anc 1439 . . . 4 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3918, 38sseldd 3822 . . 3 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
40 xrsup0 12465 . . . . 5 sup(∅, ℝ*, < ) = -∞
41 ssun2 4000 . . . . . 6 {-∞} ⊆ (ℕ0 ∪ {-∞})
42 mnfxr 10434 . . . . . . . 8 -∞ ∈ ℝ*
4342elexi 3415 . . . . . . 7 -∞ ∈ V
4443snid 4430 . . . . . 6 -∞ ∈ {-∞}
4541, 44sselii 3818 . . . . 5 -∞ ∈ (ℕ0 ∪ {-∞})
4640, 45eqeltri 2855 . . . 4 sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞})
4746a1i 11 . . 3 (𝐹𝐵 → sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
489, 39, 47pm2.61ne 3055 . 2 (𝐹𝐵 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
497, 48eqeltrd 2859 1 (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  {crab 3094  Vcvv 3398  cun 3790  wss 3792  c0 4141  {csn 4398  cmpt 4965   Or wor 5273  ccnv 5354  ran crn 5356  cima 5358  Fun wfun 6129  wf 6131  cfv 6135  (class class class)co 6922   supp csupp 7576  𝑚 cmap 8140  Fincfn 8241  supcsup 8634  cr 10271  -∞cmnf 10409  *cxr 10410   < clt 10411  cn 11374  0cn0 11642  Basecbs 16255  0gc0g 16486   Σg cgsu 16487   mPoly cmpl 19750  fldccnfld 20142   mDeg cmdg 24250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-gsum 16489  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-psr 19753  df-mpl 19755  df-cnfld 20143  df-mdeg 24252
This theorem is referenced by:  deg1cl  24280
  Copyright terms: Public domain W3C validator