MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegcl Structured version   Visualization version   GIF version

Theorem mdegcl 25990
Description: Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegcl.d 𝐷 = (𝐼 mDeg 𝑅)
mdegcl.p 𝑃 = (𝐼 mPoly 𝑅)
mdegcl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
mdegcl (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))

Proof of Theorem mdegcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegcl.d . . 3 𝐷 = (𝐼 mDeg 𝑅)
2 mdegcl.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mdegcl.b . . 3 𝐵 = (Base‘𝑃)
4 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
5 eqid 2729 . . 3 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 eqid 2729 . . 3 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
71, 2, 3, 4, 5, 6mdegval 25984 . 2 (𝐹𝐵 → (𝐷𝐹) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ))
8 supeq1 9354 . . . 4 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) = ∅ → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
98eleq1d 2813 . . 3 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) = ∅ → (sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}) ↔ sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞})))
10 imassrn 6026 . . . . . . 7 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ran (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
115, 6tdeglem1 25979 . . . . . . . 8 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0
12 frn 6663 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ⊆ ℕ0)
1311, 12mp1i 13 . . . . . . 7 (𝐹𝐵 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ⊆ ℕ0)
1410, 13sstrid 3949 . . . . . 6 (𝐹𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℕ0)
1514adantr 480 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℕ0)
16 ssun1 4131 . . . . 5 0 ⊆ (ℕ0 ∪ {-∞})
1715, 16sstrdi 3950 . . . 4 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ (ℕ0 ∪ {-∞}))
18 ffun 6659 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)))
1911, 18mp1i 13 . . . . . . 7 (𝐹𝐵 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)))
20 id 22 . . . . . . . . 9 (𝐹𝐵𝐹𝐵)
212, 3, 4, 20mplelsfi 21920 . . . . . . . 8 (𝐹𝐵𝐹 finSupp (0g𝑅))
2221fsuppimpd 9278 . . . . . . 7 (𝐹𝐵 → (𝐹 supp (0g𝑅)) ∈ Fin)
23 imafi 9222 . . . . . . 7 ((Fun (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ∧ (𝐹 supp (0g𝑅)) ∈ Fin) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
2419, 22, 23syl2anc 584 . . . . . 6 (𝐹𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
2524adantr 480 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
26 simpr 484 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅)
27 nn0ssre 12406 . . . . . . 7 0 ⊆ ℝ
28 ressxr 11178 . . . . . . 7 ℝ ⊆ ℝ*
2927, 28sstri 3947 . . . . . 6 0 ⊆ ℝ*
3015, 29sstrdi 3950 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*)
31 xrltso 13061 . . . . . 6 < Or ℝ*
32 fisupcl 9379 . . . . . 6 (( < Or ℝ* ∧ (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*)) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3331, 32mpan 690 . . . . 5 ((((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3425, 26, 30, 33syl3anc 1373 . . . 4 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3517, 34sseldd 3938 . . 3 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
36 xrsup0 13243 . . . . 5 sup(∅, ℝ*, < ) = -∞
37 ssun2 4132 . . . . . 6 {-∞} ⊆ (ℕ0 ∪ {-∞})
38 mnfxr 11191 . . . . . . . 8 -∞ ∈ ℝ*
3938elexi 3461 . . . . . . 7 -∞ ∈ V
4039snid 4616 . . . . . 6 -∞ ∈ {-∞}
4137, 40sselii 3934 . . . . 5 -∞ ∈ (ℕ0 ∪ {-∞})
4236, 41eqeltri 2824 . . . 4 sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞})
4342a1i 11 . . 3 (𝐹𝐵 → sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
449, 35, 43pm2.61ne 3010 . 2 (𝐹𝐵 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
457, 44eqeltrd 2828 1 (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3396  cun 3903  wss 3905  c0 4286  {csn 4579  cmpt 5176   Or wor 5530  ccnv 5622  ran crn 5624  cima 5626  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353   supp csupp 8100  m cmap 8760  Fincfn 8879  supcsup 9349  cr 11027  -∞cmnf 11166  *cxr 11167   < clt 11168  cn 12146  0cn0 12402  Basecbs 17138  0gc0g 17361   Σg cgsu 17362  fldccnfld 21279   mPoly cmpl 21831   mDeg cmdg 25974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-cring 20139  df-cnfld 21280  df-psr 21834  df-mpl 21836  df-mdeg 25976
This theorem is referenced by:  deg1cl  26004
  Copyright terms: Public domain W3C validator