MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegcl Structured version   Visualization version   GIF version

Theorem mdegcl 24670
Description: Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegcl.d 𝐷 = (𝐼 mDeg 𝑅)
mdegcl.p 𝑃 = (𝐼 mPoly 𝑅)
mdegcl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
mdegcl (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))

Proof of Theorem mdegcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegcl.d . . 3 𝐷 = (𝐼 mDeg 𝑅)
2 mdegcl.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mdegcl.b . . 3 𝐵 = (Base‘𝑃)
4 eqid 2798 . . 3 (0g𝑅) = (0g𝑅)
5 eqid 2798 . . 3 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 eqid 2798 . . 3 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
71, 2, 3, 4, 5, 6mdegval 24664 . 2 (𝐹𝐵 → (𝐷𝐹) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ))
8 supeq1 8893 . . . 4 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) = ∅ → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) = sup(∅, ℝ*, < ))
98eleq1d 2874 . . 3 (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) = ∅ → (sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}) ↔ sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞})))
10 imassrn 5907 . . . . . . 7 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ran (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
112, 3mplrcl 20729 . . . . . . . 8 (𝐹𝐵𝐼 ∈ V)
125, 6tdeglem1 24659 . . . . . . . 8 (𝐼 ∈ V → (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0)
13 frn 6493 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ⊆ ℕ0)
1411, 12, 133syl 18 . . . . . . 7 (𝐹𝐵 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ⊆ ℕ0)
1510, 14sstrid 3926 . . . . . 6 (𝐹𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℕ0)
1615adantr 484 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℕ0)
17 ssun1 4099 . . . . 5 0 ⊆ (ℕ0 ∪ {-∞})
1816, 17sstrdi 3927 . . . 4 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ (ℕ0 ∪ {-∞}))
19 ffun 6490 . . . . . . . 8 ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶ℕ0 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)))
2011, 12, 193syl 18 . . . . . . 7 (𝐹𝐵 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)))
21 id 22 . . . . . . . . 9 (𝐹𝐵𝐹𝐵)
22 reldmmpl 20665 . . . . . . . . . . 11 Rel dom mPoly
2322, 2, 3elbasov 16537 . . . . . . . . . 10 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
2423simprd 499 . . . . . . . . 9 (𝐹𝐵𝑅 ∈ V)
252, 3, 4, 21, 24mplelsfi 20730 . . . . . . . 8 (𝐹𝐵𝐹 finSupp (0g𝑅))
2625fsuppimpd 8824 . . . . . . 7 (𝐹𝐵 → (𝐹 supp (0g𝑅)) ∈ Fin)
27 imafi 8801 . . . . . . 7 ((Fun (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) ∧ (𝐹 supp (0g𝑅)) ∈ Fin) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
2820, 26, 27syl2anc 587 . . . . . 6 (𝐹𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
2928adantr 484 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin)
30 simpr 488 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅)
31 nn0ssre 11889 . . . . . . 7 0 ⊆ ℝ
32 ressxr 10674 . . . . . . 7 ℝ ⊆ ℝ*
3331, 32sstri 3924 . . . . . 6 0 ⊆ ℝ*
3416, 33sstrdi 3927 . . . . 5 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*)
35 xrltso 12522 . . . . . 6 < Or ℝ*
36 fisupcl 8917 . . . . . 6 (( < Or ℝ* ∧ (((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*)) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3735, 36mpan 689 . . . . 5 ((((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3829, 30, 34, 37syl3anc 1368 . . . 4 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))))
3918, 38sseldd 3916 . . 3 ((𝐹𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
40 xrsup0 12704 . . . . 5 sup(∅, ℝ*, < ) = -∞
41 ssun2 4100 . . . . . 6 {-∞} ⊆ (ℕ0 ∪ {-∞})
42 mnfxr 10687 . . . . . . . 8 -∞ ∈ ℝ*
4342elexi 3460 . . . . . . 7 -∞ ∈ V
4443snid 4561 . . . . . 6 -∞ ∈ {-∞}
4541, 44sselii 3912 . . . . 5 -∞ ∈ (ℕ0 ∪ {-∞})
4640, 45eqeltri 2886 . . . 4 sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞})
4746a1i 11 . . 3 (𝐹𝐵 → sup(∅, ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
489, 39, 47pm2.61ne 3072 . 2 (𝐹𝐵 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ (ℕ0 ∪ {-∞}))
497, 48eqeltrd 2890 1 (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  cun 3879  wss 3881  c0 4243  {csn 4525  cmpt 5110   Or wor 5437  ccnv 5518  ran crn 5520  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135   supp csupp 7813  m cmap 8389  Fincfn 8492  supcsup 8888  cr 10525  -∞cmnf 10662  *cxr 10663   < clt 10664  cn 11625  0cn0 11885  Basecbs 16475  0gc0g 16705   Σg cgsu 16706  fldccnfld 20091   mPoly cmpl 20591   mDeg cmdg 24654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-cnfld 20092  df-psr 20594  df-mpl 20596  df-mdeg 24656
This theorem is referenced by:  deg1cl  24684
  Copyright terms: Public domain W3C validator