Step | Hyp | Ref
| Expression |
1 | | mdegcl.d |
. . 3
⊢ 𝐷 = (𝐼 mDeg 𝑅) |
2 | | mdegcl.p |
. . 3
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
3 | | mdegcl.b |
. . 3
⊢ 𝐵 = (Base‘𝑃) |
4 | | eqid 2738 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
5 | | eqid 2738 |
. . 3
⊢ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin} |
6 | | eqid 2738 |
. . 3
⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) |
7 | 1, 2, 3, 4, 5, 6 | mdegval 25228 |
. 2
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, <
)) |
8 | | supeq1 9204 |
. . . 4
⊢ (((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) = ∅ → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) =
sup(∅, ℝ*, < )) |
9 | 8 | eleq1d 2823 |
. . 3
⊢ (((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) = ∅ → (sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈
(ℕ0 ∪ {-∞}) ↔ sup(∅, ℝ*,
< ) ∈ (ℕ0 ∪ {-∞}))) |
10 | | imassrn 5980 |
. . . . . . 7
⊢ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ⊆ ran (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) |
11 | 5, 6 | tdeglem1 25220 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶ℕ0 |
12 | | frn 6607 |
. . . . . . . 8
⊢ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶ℕ0 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) ⊆
ℕ0) |
13 | 11, 12 | mp1i 13 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐵 → ran (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) ⊆
ℕ0) |
14 | 10, 13 | sstrid 3932 |
. . . . . 6
⊢ (𝐹 ∈ 𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ⊆
ℕ0) |
15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ⊆
ℕ0) |
16 | | ssun1 4106 |
. . . . 5
⊢
ℕ0 ⊆ (ℕ0 ∪
{-∞}) |
17 | 15, 16 | sstrdi 3933 |
. . . 4
⊢ ((𝐹 ∈ 𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ⊆ (ℕ0 ∪
{-∞})) |
18 | | ffun 6603 |
. . . . . . . 8
⊢ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)):{𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin}⟶ℕ0 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏))) |
19 | 11, 18 | mp1i 13 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐵 → Fun (𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏))) |
20 | | id 22 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) |
21 | | reldmmpl 21196 |
. . . . . . . . . . 11
⊢ Rel dom
mPoly |
22 | 21, 2, 3 | elbasov 16919 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
23 | 22 | simprd 496 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐵 → 𝑅 ∈ V) |
24 | 2, 3, 4, 20, 23 | mplelsfi 21201 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp (0g‘𝑅)) |
25 | 24 | fsuppimpd 9135 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐵 → (𝐹 supp (0g‘𝑅)) ∈ Fin) |
26 | | imafi 8958 |
. . . . . . 7
⊢ ((Fun
(𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) ∧ (𝐹 supp (0g‘𝑅)) ∈ Fin) → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ∈ Fin) |
27 | 19, 25, 26 | syl2anc 584 |
. . . . . 6
⊢ (𝐹 ∈ 𝐵 → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ∈ Fin) |
28 | 27 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ∈ Fin) |
29 | | simpr 485 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) |
30 | | nn0ssre 12237 |
. . . . . . 7
⊢
ℕ0 ⊆ ℝ |
31 | | ressxr 11019 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
32 | 30, 31 | sstri 3930 |
. . . . . 6
⊢
ℕ0 ⊆ ℝ* |
33 | 15, 32 | sstrdi 3933 |
. . . . 5
⊢ ((𝐹 ∈ 𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) → ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ⊆
ℝ*) |
34 | | xrltso 12875 |
. . . . . 6
⊢ < Or
ℝ* |
35 | | fisupcl 9228 |
. . . . . 6
⊢ (( <
Or ℝ* ∧ (((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ⊆ ℝ*)) →
sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈
((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅)))) |
36 | 34, 35 | mpan 687 |
. . . . 5
⊢ ((((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ∈ Fin ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅ ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ⊆ ℝ*) →
sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈
((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅)))) |
37 | 28, 29, 33, 36 | syl3anc 1370 |
. . . 4
⊢ ((𝐹 ∈ 𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈
((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅)))) |
38 | 17, 37 | sseldd 3922 |
. . 3
⊢ ((𝐹 ∈ 𝐵 ∧ ((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))) ≠ ∅) → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈
(ℕ0 ∪ {-∞})) |
39 | | xrsup0 13057 |
. . . . 5
⊢
sup(∅, ℝ*, < ) = -∞ |
40 | | ssun2 4107 |
. . . . . 6
⊢
{-∞} ⊆ (ℕ0 ∪
{-∞}) |
41 | | mnfxr 11032 |
. . . . . . . 8
⊢ -∞
∈ ℝ* |
42 | 41 | elexi 3451 |
. . . . . . 7
⊢ -∞
∈ V |
43 | 42 | snid 4597 |
. . . . . 6
⊢ -∞
∈ {-∞} |
44 | 40, 43 | sselii 3918 |
. . . . 5
⊢ -∞
∈ (ℕ0 ∪ {-∞}) |
45 | 39, 44 | eqeltri 2835 |
. . . 4
⊢
sup(∅, ℝ*, < ) ∈ (ℕ0
∪ {-∞}) |
46 | 45 | a1i 11 |
. . 3
⊢ (𝐹 ∈ 𝐵 → sup(∅, ℝ*,
< ) ∈ (ℕ0 ∪ {-∞})) |
47 | 9, 38, 46 | pm2.61ne 3030 |
. 2
⊢ (𝐹 ∈ 𝐵 → sup(((𝑏 ∈ {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈ Fin} ↦
(ℂfld Σg 𝑏)) “ (𝐹 supp (0g‘𝑅))), ℝ*, < ) ∈
(ℕ0 ∪ {-∞})) |
48 | 7, 47 | eqeltrd 2839 |
1
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ (ℕ0 ∪
{-∞})) |