MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndth Structured version   Visualization version   GIF version

Theorem bndth 23169
Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -𝐹.) (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
bndth (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem bndth
Dummy variables 𝑣 𝑢 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndth.4 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 bndth.1 . . . . . 6 𝑋 = 𝐽
3 bndth.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
4 retopon 22979 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
53, 4eqeltri 2855 . . . . . . 7 𝐾 ∈ (TopOn‘ℝ)
65toponunii 21132 . . . . . 6 ℝ = 𝐾
72, 6cnf 21462 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
81, 7syl 17 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
98frnd 6300 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
10 unieq 4681 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ((,) “ ({-∞} × ℝ)))
11 imassrn 5733 . . . . . . . . . 10 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
1211unissi 4698 . . . . . . . . 9 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
13 unirnioo 12590 . . . . . . . . 9 ℝ = ran (,)
1412, 13sseqtr4i 3857 . . . . . . . 8 ((,) “ ({-∞} × ℝ)) ⊆ ℝ
15 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
16 ltp1 11217 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
17 ressxr 10422 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
18 peano2re 10551 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1917, 18sseldi 3819 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
20 elioomnf 12585 . . . . . . . . . . . 12 ((𝑥 + 1) ∈ ℝ* → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2119, 20syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2215, 16, 21mpbir2and 703 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ (-∞(,)(𝑥 + 1)))
23 df-ov 6927 . . . . . . . . . . 11 (-∞(,)(𝑥 + 1)) = ((,)‘⟨-∞, (𝑥 + 1)⟩)
24 mnfxr 10436 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
2524elexi 3415 . . . . . . . . . . . . . 14 -∞ ∈ V
2625snid 4430 . . . . . . . . . . . . 13 -∞ ∈ {-∞}
27 opelxpi 5394 . . . . . . . . . . . . 13 ((-∞ ∈ {-∞} ∧ (𝑥 + 1) ∈ ℝ) → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
2826, 18, 27sylancr 581 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
29 ioof 12588 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
30 ffun 6296 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 Fun (,)
32 snssi 4572 . . . . . . . . . . . . . . . 16 (-∞ ∈ ℝ* → {-∞} ⊆ ℝ*)
3324, 32ax-mp 5 . . . . . . . . . . . . . . 15 {-∞} ⊆ ℝ*
34 xpss12 5372 . . . . . . . . . . . . . . 15 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
3533, 17, 34mp2an 682 . . . . . . . . . . . . . 14 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
3629fdmi 6303 . . . . . . . . . . . . . 14 dom (,) = (ℝ* × ℝ*)
3735, 36sseqtr4i 3857 . . . . . . . . . . . . 13 ({-∞} × ℝ) ⊆ dom (,)
38 funfvima2 6767 . . . . . . . . . . . . 13 ((Fun (,) ∧ ({-∞} × ℝ) ⊆ dom (,)) → (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ))))
3931, 37, 38mp2an 682 . . . . . . . . . . . 12 (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4028, 39syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4123, 40syl5eqel 2863 . . . . . . . . . 10 (𝑥 ∈ ℝ → (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ)))
42 elunii 4678 . . . . . . . . . 10 ((𝑥 ∈ (-∞(,)(𝑥 + 1)) ∧ (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ))) → 𝑥 ((,) “ ({-∞} × ℝ)))
4322, 41, 42syl2anc 579 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ((,) “ ({-∞} × ℝ)))
4443ssriv 3825 . . . . . . . 8 ℝ ⊆ ((,) “ ({-∞} × ℝ))
4514, 44eqssi 3837 . . . . . . 7 ((,) “ ({-∞} × ℝ)) = ℝ
4610, 45syl6eq 2830 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ℝ)
4746sseq2d 3852 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (ran 𝐹 𝑢 ↔ ran 𝐹 ⊆ ℝ))
48 pweq 4382 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝒫 𝑢 = 𝒫 ((,) “ ({-∞} × ℝ)))
4948ineq1d 4036 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → (𝒫 𝑢 ∩ Fin) = (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
5049rexeqdv 3341 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣 ↔ ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
5147, 50imbi12d 336 . . . 4 (𝑢 = ((,) “ ({-∞} × ℝ)) → ((ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣) ↔ (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)))
52 bndth.3 . . . . . 6 (𝜑𝐽 ∈ Comp)
53 rncmp 21612 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)
5452, 1, 53syl2anc 579 . . . . 5 (𝜑 → (𝐾t ran 𝐹) ∈ Comp)
55 retop 22977 . . . . . . 7 (topGen‘ran (,)) ∈ Top
563, 55eqeltri 2855 . . . . . 6 𝐾 ∈ Top
576cmpsub 21616 . . . . . 6 ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ℝ) → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5856, 9, 57sylancr 581 . . . . 5 (𝜑 → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5954, 58mpbid 224 . . . 4 (𝜑 → ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣))
60 retopbas 22976 . . . . . . . . 9 ran (,) ∈ TopBases
61 bastg 21182 . . . . . . . . 9 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
6260, 61ax-mp 5 . . . . . . . 8 ran (,) ⊆ (topGen‘ran (,))
6362, 3sseqtr4i 3857 . . . . . . 7 ran (,) ⊆ 𝐾
6411, 63sstri 3830 . . . . . 6 ((,) “ ({-∞} × ℝ)) ⊆ 𝐾
6556elexi 3415 . . . . . . 7 𝐾 ∈ V
6665elpw2 5064 . . . . . 6 (((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾 ↔ ((,) “ ({-∞} × ℝ)) ⊆ 𝐾)
6764, 66mpbir 223 . . . . 5 ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾
6867a1i 11 . . . 4 (𝜑 → ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾)
6951, 59, 68rspcdva 3517 . . 3 (𝜑 → (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
709, 69mpd 15 . 2 (𝜑 → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)
71 simpr 479 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
72 elin 4019 . . . . . . 7 (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7371, 72sylib 210 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7473adantrr 707 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7574simprd 491 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → 𝑣 ∈ Fin)
7673simpld 490 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)))
7776elpwid 4391 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
7833sseli 3817 . . . . . . . . . . . 12 (𝑢 ∈ {-∞} → 𝑢 ∈ ℝ*)
7978adantr 474 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 ∈ ℝ*)
8017sseli 3817 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
8180adantl 475 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
82 mnflt 12272 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → -∞ < 𝑤)
83 xrltnle 10446 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8424, 80, 83sylancr 581 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8582, 84mpbid 224 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → ¬ 𝑤 ≤ -∞)
8685adantl 475 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤 ≤ -∞)
87 elsni 4415 . . . . . . . . . . . . . . 15 (𝑢 ∈ {-∞} → 𝑢 = -∞)
8887adantr 474 . . . . . . . . . . . . . 14 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 = -∞)
8988breq2d 4900 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑤𝑢𝑤 ≤ -∞))
9086, 89mtbird 317 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤𝑢)
91 ioo0 12516 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9278, 80, 91syl2an 589 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9392necon3abid 3005 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) ≠ ∅ ↔ ¬ 𝑤𝑢))
9490, 93mpbird 249 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑢(,)𝑤) ≠ ∅)
95 df-ioo 12495 . . . . . . . . . . . 12 (,) = (𝑦 ∈ ℝ*, 𝑧 ∈ ℝ* ↦ {𝑣 ∈ ℝ* ∣ (𝑦 < 𝑣𝑣 < 𝑧)})
96 idd 24 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥 < 𝑤))
97 xrltle 12296 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥𝑤))
98 idd 24 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢 < 𝑥))
99 xrltle 12296 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢𝑥))
10095, 96, 97, 98, 99ixxub 12512 . . . . . . . . . . 11 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ* ∧ (𝑢(,)𝑤) ≠ ∅) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
10179, 81, 94, 100syl3anc 1439 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
102 simpr 479 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
103101, 102eqeltrd 2859 . . . . . . . . 9 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
104103rgen2 3157 . . . . . . . 8 𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ
105 fveq2 6448 . . . . . . . . . . . 12 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = ((,)‘⟨𝑢, 𝑤⟩))
106 df-ov 6927 . . . . . . . . . . . 12 (𝑢(,)𝑤) = ((,)‘⟨𝑢, 𝑤⟩)
107105, 106syl6eqr 2832 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = (𝑢(,)𝑤))
108107supeq1d 8642 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑤⟩ → sup(((,)‘𝑧), ℝ*, < ) = sup((𝑢(,)𝑤), ℝ*, < ))
109108eleq1d 2844 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑤⟩ → (sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ))
110109ralxp 5511 . . . . . . . 8 (∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ ∀𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
111104, 110mpbir 223 . . . . . . 7 𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ
112 ffn 6293 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11329, 112ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
114 supeq1 8641 . . . . . . . . . 10 (𝑤 = ((,)‘𝑧) → sup(𝑤, ℝ*, < ) = sup(((,)‘𝑧), ℝ*, < ))
115114eleq1d 2844 . . . . . . . . 9 (𝑤 = ((,)‘𝑧) → (sup(𝑤, ℝ*, < ) ∈ ℝ ↔ sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
116115ralima 6773 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
117113, 35, 116mp2an 682 . . . . . . 7 (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ)
118111, 117mpbir 223 . . . . . 6 𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ
119 ssralv 3885 . . . . . 6 (𝑣 ⊆ ((,) “ ({-∞} × ℝ)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ))
12077, 118, 119mpisyl 21 . . . . 5 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
121120adantrr 707 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
122 fimaxre3 11327 . . . 4 ((𝑣 ∈ Fin ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
12375, 121, 122syl2anc 579 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
124 simplrr 768 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ran 𝐹 𝑣)
125124sselda 3821 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → 𝑧 𝑣)
126 eluni2 4677 . . . . . . . 8 (𝑧 𝑣 ↔ ∃𝑤𝑣 𝑧𝑤)
127 r19.29r 3259 . . . . . . . . . 10 ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → ∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥))
128 sspwuni 4847 . . . . . . . . . . . . . . . . . . 19 (((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ ↔ ((,) “ ({-∞} × ℝ)) ⊆ ℝ)
12914, 128mpbir 223 . . . . . . . . . . . . . . . . . 18 ((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ
130773ad2ant1 1124 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
131 simp2r 1214 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤𝑣)
132130, 131sseldd 3822 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ ((,) “ ({-∞} × ℝ)))
133129, 132sseldi 3819 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ 𝒫 ℝ)
134133elpwid 4391 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ)
135 simp3l 1215 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑤)
136134, 135sseldd 3822 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ∈ ℝ)
137120r19.21bi 3114 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑤𝑣) → sup(𝑤, ℝ*, < ) ∈ ℝ)
138137adantrl 706 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
1391383adant3 1123 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
140 simp2l 1213 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑥 ∈ ℝ)
141134, 17syl6ss 3833 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ*)
142 supxrub 12470 . . . . . . . . . . . . . . . 16 ((𝑤 ⊆ ℝ*𝑧𝑤) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
143141, 135, 142syl2anc 579 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
144 simp3r 1216 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ≤ 𝑥)
145136, 139, 140, 143, 144letrd 10535 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑥)
1461453expia 1111 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
147146anassrs 461 . . . . . . . . . . . 12 ((((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) ∧ 𝑤𝑣) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
148147rexlimdva 3213 . . . . . . . . . . 11 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
149148adantlrr 711 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
150127, 149syl5 34 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
151150expdimp 446 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ ∃𝑤𝑣 𝑧𝑤) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
152126, 151sylan2b 587 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 𝑣) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
153125, 152syldan 585 . . . . . 6 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
154153ralrimdva 3151 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
1558ffnd 6294 . . . . . . 7 (𝜑𝐹 Fn 𝑋)
156155ad2antrr 716 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn 𝑋)
157 breq1 4891 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑧𝑥 ↔ (𝐹𝑦) ≤ 𝑥))
158157ralrn 6628 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
159156, 158syl 17 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
160154, 159sylibd 231 . . . 4 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
161160reximdva 3198 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
162123, 161mpd 15 . 2 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
16370, 162rexlimddv 3218 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398  cop 4404   cuni 4673   class class class wbr 4888   × cxp 5355  dom cdm 5357  ran crn 5358  cima 5360  Fun wfun 6131   Fn wfn 6132  wf 6133  cfv 6137  (class class class)co 6924  Fincfn 8243  supcsup 8636  cr 10273  1c1 10275   + caddc 10277  -∞cmnf 10411  *cxr 10412   < clt 10413  cle 10414  (,)cioo 12491  t crest 16471  topGenctg 16488  Topctop 21109  TopOnctopon 21126  TopBasesctb 21161   Cn ccn 21440  Compccmp 21602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fi 8607  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997  df-q 12100  df-ioo 12495  df-rest 16473  df-topgen 16494  df-top 21110  df-topon 21127  df-bases 21162  df-cn 21443  df-cmp 21603
This theorem is referenced by:  evth  23170
  Copyright terms: Public domain W3C validator