MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndth Structured version   Visualization version   GIF version

Theorem bndth 24465
Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -𝐹.) (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
bndth (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem bndth
Dummy variables 𝑣 𝑢 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndth.4 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 bndth.1 . . . . . 6 𝑋 = 𝐽
3 bndth.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
4 retopon 24271 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
53, 4eqeltri 2829 . . . . . . 7 𝐾 ∈ (TopOn‘ℝ)
65toponunii 22409 . . . . . 6 ℝ = 𝐾
72, 6cnf 22741 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
81, 7syl 17 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
98frnd 6722 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
10 unieq 4918 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ((,) “ ({-∞} × ℝ)))
11 imassrn 6068 . . . . . . . . . 10 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
1211unissi 4916 . . . . . . . . 9 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
13 unirnioo 13422 . . . . . . . . 9 ℝ = ran (,)
1412, 13sseqtrri 4018 . . . . . . . 8 ((,) “ ({-∞} × ℝ)) ⊆ ℝ
15 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
16 ltp1 12050 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
17 ressxr 11254 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
18 peano2re 11383 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1917, 18sselid 3979 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
20 elioomnf 13417 . . . . . . . . . . . 12 ((𝑥 + 1) ∈ ℝ* → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2119, 20syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2215, 16, 21mpbir2and 711 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ (-∞(,)(𝑥 + 1)))
23 df-ov 7408 . . . . . . . . . . 11 (-∞(,)(𝑥 + 1)) = ((,)‘⟨-∞, (𝑥 + 1)⟩)
24 mnfxr 11267 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
2524elexi 3493 . . . . . . . . . . . . . 14 -∞ ∈ V
2625snid 4663 . . . . . . . . . . . . 13 -∞ ∈ {-∞}
27 opelxpi 5712 . . . . . . . . . . . . 13 ((-∞ ∈ {-∞} ∧ (𝑥 + 1) ∈ ℝ) → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
2826, 18, 27sylancr 587 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
29 ioof 13420 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
30 ffun 6717 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 Fun (,)
32 snssi 4810 . . . . . . . . . . . . . . . 16 (-∞ ∈ ℝ* → {-∞} ⊆ ℝ*)
3324, 32ax-mp 5 . . . . . . . . . . . . . . 15 {-∞} ⊆ ℝ*
34 xpss12 5690 . . . . . . . . . . . . . . 15 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
3533, 17, 34mp2an 690 . . . . . . . . . . . . . 14 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
3629fdmi 6726 . . . . . . . . . . . . . 14 dom (,) = (ℝ* × ℝ*)
3735, 36sseqtrri 4018 . . . . . . . . . . . . 13 ({-∞} × ℝ) ⊆ dom (,)
38 funfvima2 7229 . . . . . . . . . . . . 13 ((Fun (,) ∧ ({-∞} × ℝ) ⊆ dom (,)) → (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ))))
3931, 37, 38mp2an 690 . . . . . . . . . . . 12 (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4028, 39syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4123, 40eqeltrid 2837 . . . . . . . . . 10 (𝑥 ∈ ℝ → (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ)))
42 elunii 4912 . . . . . . . . . 10 ((𝑥 ∈ (-∞(,)(𝑥 + 1)) ∧ (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ))) → 𝑥 ((,) “ ({-∞} × ℝ)))
4322, 41, 42syl2anc 584 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ((,) “ ({-∞} × ℝ)))
4443ssriv 3985 . . . . . . . 8 ℝ ⊆ ((,) “ ({-∞} × ℝ))
4514, 44eqssi 3997 . . . . . . 7 ((,) “ ({-∞} × ℝ)) = ℝ
4610, 45eqtrdi 2788 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ℝ)
4746sseq2d 4013 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (ran 𝐹 𝑢 ↔ ran 𝐹 ⊆ ℝ))
48 pweq 4615 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝒫 𝑢 = 𝒫 ((,) “ ({-∞} × ℝ)))
4948ineq1d 4210 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → (𝒫 𝑢 ∩ Fin) = (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
5049rexeqdv 3326 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣 ↔ ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
5147, 50imbi12d 344 . . . 4 (𝑢 = ((,) “ ({-∞} × ℝ)) → ((ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣) ↔ (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)))
52 bndth.3 . . . . . 6 (𝜑𝐽 ∈ Comp)
53 rncmp 22891 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)
5452, 1, 53syl2anc 584 . . . . 5 (𝜑 → (𝐾t ran 𝐹) ∈ Comp)
55 retop 24269 . . . . . . 7 (topGen‘ran (,)) ∈ Top
563, 55eqeltri 2829 . . . . . 6 𝐾 ∈ Top
576cmpsub 22895 . . . . . 6 ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ℝ) → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5856, 9, 57sylancr 587 . . . . 5 (𝜑 → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5954, 58mpbid 231 . . . 4 (𝜑 → ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣))
60 retopbas 24268 . . . . . . . . 9 ran (,) ∈ TopBases
61 bastg 22460 . . . . . . . . 9 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
6260, 61ax-mp 5 . . . . . . . 8 ran (,) ⊆ (topGen‘ran (,))
6362, 3sseqtrri 4018 . . . . . . 7 ran (,) ⊆ 𝐾
6411, 63sstri 3990 . . . . . 6 ((,) “ ({-∞} × ℝ)) ⊆ 𝐾
6556, 64elpwi2 5345 . . . . 5 ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾
6665a1i 11 . . . 4 (𝜑 → ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾)
6751, 59, 66rspcdva 3613 . . 3 (𝜑 → (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
689, 67mpd 15 . 2 (𝜑 → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)
69 simpr 485 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
70 elin 3963 . . . . . . 7 (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7169, 70sylib 217 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7271adantrr 715 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7372simprd 496 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → 𝑣 ∈ Fin)
7471simpld 495 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)))
7574elpwid 4610 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
7633sseli 3977 . . . . . . . . . . . 12 (𝑢 ∈ {-∞} → 𝑢 ∈ ℝ*)
7776adantr 481 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 ∈ ℝ*)
7817sseli 3977 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
7978adantl 482 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
80 mnflt 13099 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → -∞ < 𝑤)
81 xrltnle 11277 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8224, 78, 81sylancr 587 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8380, 82mpbid 231 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → ¬ 𝑤 ≤ -∞)
8483adantl 482 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤 ≤ -∞)
85 elsni 4644 . . . . . . . . . . . . . . 15 (𝑢 ∈ {-∞} → 𝑢 = -∞)
8685adantr 481 . . . . . . . . . . . . . 14 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 = -∞)
8786breq2d 5159 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑤𝑢𝑤 ≤ -∞))
8884, 87mtbird 324 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤𝑢)
89 ioo0 13345 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9076, 78, 89syl2an 596 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9190necon3abid 2977 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) ≠ ∅ ↔ ¬ 𝑤𝑢))
9288, 91mpbird 256 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑢(,)𝑤) ≠ ∅)
93 df-ioo 13324 . . . . . . . . . . . 12 (,) = (𝑦 ∈ ℝ*, 𝑧 ∈ ℝ* ↦ {𝑣 ∈ ℝ* ∣ (𝑦 < 𝑣𝑣 < 𝑧)})
94 idd 24 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥 < 𝑤))
95 xrltle 13124 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥𝑤))
96 idd 24 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢 < 𝑥))
97 xrltle 13124 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢𝑥))
9893, 94, 95, 96, 97ixxub 13341 . . . . . . . . . . 11 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ* ∧ (𝑢(,)𝑤) ≠ ∅) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
9977, 79, 92, 98syl3anc 1371 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
100 simpr 485 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
10199, 100eqeltrd 2833 . . . . . . . . 9 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
102101rgen2 3197 . . . . . . . 8 𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ
103 fveq2 6888 . . . . . . . . . . . 12 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = ((,)‘⟨𝑢, 𝑤⟩))
104 df-ov 7408 . . . . . . . . . . . 12 (𝑢(,)𝑤) = ((,)‘⟨𝑢, 𝑤⟩)
105103, 104eqtr4di 2790 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = (𝑢(,)𝑤))
106105supeq1d 9437 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑤⟩ → sup(((,)‘𝑧), ℝ*, < ) = sup((𝑢(,)𝑤), ℝ*, < ))
107106eleq1d 2818 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑤⟩ → (sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ))
108107ralxp 5839 . . . . . . . 8 (∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ ∀𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
109102, 108mpbir 230 . . . . . . 7 𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ
110 ffn 6714 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11129, 110ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
112 supeq1 9436 . . . . . . . . . 10 (𝑤 = ((,)‘𝑧) → sup(𝑤, ℝ*, < ) = sup(((,)‘𝑧), ℝ*, < ))
113112eleq1d 2818 . . . . . . . . 9 (𝑤 = ((,)‘𝑧) → (sup(𝑤, ℝ*, < ) ∈ ℝ ↔ sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
114113ralima 7236 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
115111, 35, 114mp2an 690 . . . . . . 7 (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ)
116109, 115mpbir 230 . . . . . 6 𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ
117 ssralv 4049 . . . . . 6 (𝑣 ⊆ ((,) “ ({-∞} × ℝ)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ))
11875, 116, 117mpisyl 21 . . . . 5 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
119118adantrr 715 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
120 fimaxre3 12156 . . . 4 ((𝑣 ∈ Fin ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
12173, 119, 120syl2anc 584 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
122 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ran 𝐹 𝑣)
123122sselda 3981 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → 𝑧 𝑣)
124 eluni2 4911 . . . . . . . 8 (𝑧 𝑣 ↔ ∃𝑤𝑣 𝑧𝑤)
125 r19.29r 3116 . . . . . . . . . 10 ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → ∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥))
126 sspwuni 5102 . . . . . . . . . . . . . . . . . . 19 (((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ ↔ ((,) “ ({-∞} × ℝ)) ⊆ ℝ)
12714, 126mpbir 230 . . . . . . . . . . . . . . . . . 18 ((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ
128753ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
129 simp2r 1200 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤𝑣)
130128, 129sseldd 3982 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ ((,) “ ({-∞} × ℝ)))
131127, 130sselid 3979 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ 𝒫 ℝ)
132131elpwid 4610 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ)
133 simp3l 1201 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑤)
134132, 133sseldd 3982 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ∈ ℝ)
135118r19.21bi 3248 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑤𝑣) → sup(𝑤, ℝ*, < ) ∈ ℝ)
136135adantrl 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
1371363adant3 1132 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
138 simp2l 1199 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑥 ∈ ℝ)
139132, 17sstrdi 3993 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ*)
140 supxrub 13299 . . . . . . . . . . . . . . . 16 ((𝑤 ⊆ ℝ*𝑧𝑤) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
141139, 133, 140syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
142 simp3r 1202 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ≤ 𝑥)
143134, 137, 138, 141, 142letrd 11367 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑥)
1441433expia 1121 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
145144anassrs 468 . . . . . . . . . . . 12 ((((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) ∧ 𝑤𝑣) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
146145rexlimdva 3155 . . . . . . . . . . 11 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
147146adantlrr 719 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
148125, 147syl5 34 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
149148expdimp 453 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ ∃𝑤𝑣 𝑧𝑤) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
150124, 149sylan2b 594 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 𝑣) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
151123, 150syldan 591 . . . . . 6 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
152151ralrimdva 3154 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
1538ffnd 6715 . . . . . . 7 (𝜑𝐹 Fn 𝑋)
154153ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn 𝑋)
155 breq1 5150 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑧𝑥 ↔ (𝐹𝑦) ≤ 𝑥))
156155ralrn 7086 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
157154, 156syl 17 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
158152, 157sylibd 238 . . . 4 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
159158reximdva 3168 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
160121, 159mpd 15 . 2 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
16168, 160rexlimddv 3161 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  cin 3946  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627  cop 4633   cuni 4907   class class class wbr 5147   × cxp 5673  dom cdm 5675  ran crn 5676  cima 5678  Fun wfun 6534   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  Fincfn 8935  supcsup 9431  cr 11105  1c1 11107   + caddc 11109  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245  (,)cioo 13320  t crest 17362  topGenctg 17379  Topctop 22386  TopOnctopon 22403  TopBasesctb 22439   Cn ccn 22719  Compccmp 22881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-ioo 13324  df-rest 17364  df-topgen 17385  df-top 22387  df-topon 22404  df-bases 22440  df-cn 22722  df-cmp 22882
This theorem is referenced by:  evth  24466
  Copyright terms: Public domain W3C validator