MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndth Structured version   Visualization version   GIF version

Theorem bndth 23563
Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -𝐹.) (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
bndth (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem bndth
Dummy variables 𝑣 𝑢 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndth.4 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 bndth.1 . . . . . 6 𝑋 = 𝐽
3 bndth.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
4 retopon 23369 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
53, 4eqeltri 2886 . . . . . . 7 𝐾 ∈ (TopOn‘ℝ)
65toponunii 21521 . . . . . 6 ℝ = 𝐾
72, 6cnf 21851 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
81, 7syl 17 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
98frnd 6494 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
10 unieq 4811 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ((,) “ ({-∞} × ℝ)))
11 imassrn 5907 . . . . . . . . . 10 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
1211unissi 4809 . . . . . . . . 9 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
13 unirnioo 12827 . . . . . . . . 9 ℝ = ran (,)
1412, 13sseqtrri 3952 . . . . . . . 8 ((,) “ ({-∞} × ℝ)) ⊆ ℝ
15 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
16 ltp1 11469 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
17 ressxr 10674 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
18 peano2re 10802 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1917, 18sseldi 3913 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
20 elioomnf 12822 . . . . . . . . . . . 12 ((𝑥 + 1) ∈ ℝ* → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2119, 20syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2215, 16, 21mpbir2and 712 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ (-∞(,)(𝑥 + 1)))
23 df-ov 7138 . . . . . . . . . . 11 (-∞(,)(𝑥 + 1)) = ((,)‘⟨-∞, (𝑥 + 1)⟩)
24 mnfxr 10687 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
2524elexi 3460 . . . . . . . . . . . . . 14 -∞ ∈ V
2625snid 4561 . . . . . . . . . . . . 13 -∞ ∈ {-∞}
27 opelxpi 5556 . . . . . . . . . . . . 13 ((-∞ ∈ {-∞} ∧ (𝑥 + 1) ∈ ℝ) → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
2826, 18, 27sylancr 590 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
29 ioof 12825 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
30 ffun 6490 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 Fun (,)
32 snssi 4701 . . . . . . . . . . . . . . . 16 (-∞ ∈ ℝ* → {-∞} ⊆ ℝ*)
3324, 32ax-mp 5 . . . . . . . . . . . . . . 15 {-∞} ⊆ ℝ*
34 xpss12 5534 . . . . . . . . . . . . . . 15 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
3533, 17, 34mp2an 691 . . . . . . . . . . . . . 14 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
3629fdmi 6498 . . . . . . . . . . . . . 14 dom (,) = (ℝ* × ℝ*)
3735, 36sseqtrri 3952 . . . . . . . . . . . . 13 ({-∞} × ℝ) ⊆ dom (,)
38 funfvima2 6971 . . . . . . . . . . . . 13 ((Fun (,) ∧ ({-∞} × ℝ) ⊆ dom (,)) → (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ))))
3931, 37, 38mp2an 691 . . . . . . . . . . . 12 (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4028, 39syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4123, 40eqeltrid 2894 . . . . . . . . . 10 (𝑥 ∈ ℝ → (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ)))
42 elunii 4805 . . . . . . . . . 10 ((𝑥 ∈ (-∞(,)(𝑥 + 1)) ∧ (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ))) → 𝑥 ((,) “ ({-∞} × ℝ)))
4322, 41, 42syl2anc 587 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ((,) “ ({-∞} × ℝ)))
4443ssriv 3919 . . . . . . . 8 ℝ ⊆ ((,) “ ({-∞} × ℝ))
4514, 44eqssi 3931 . . . . . . 7 ((,) “ ({-∞} × ℝ)) = ℝ
4610, 45eqtrdi 2849 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ℝ)
4746sseq2d 3947 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (ran 𝐹 𝑢 ↔ ran 𝐹 ⊆ ℝ))
48 pweq 4513 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝒫 𝑢 = 𝒫 ((,) “ ({-∞} × ℝ)))
4948ineq1d 4138 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → (𝒫 𝑢 ∩ Fin) = (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
5049rexeqdv 3365 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣 ↔ ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
5147, 50imbi12d 348 . . . 4 (𝑢 = ((,) “ ({-∞} × ℝ)) → ((ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣) ↔ (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)))
52 bndth.3 . . . . . 6 (𝜑𝐽 ∈ Comp)
53 rncmp 22001 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)
5452, 1, 53syl2anc 587 . . . . 5 (𝜑 → (𝐾t ran 𝐹) ∈ Comp)
55 retop 23367 . . . . . . 7 (topGen‘ran (,)) ∈ Top
563, 55eqeltri 2886 . . . . . 6 𝐾 ∈ Top
576cmpsub 22005 . . . . . 6 ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ℝ) → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5856, 9, 57sylancr 590 . . . . 5 (𝜑 → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5954, 58mpbid 235 . . . 4 (𝜑 → ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣))
60 retopbas 23366 . . . . . . . . 9 ran (,) ∈ TopBases
61 bastg 21571 . . . . . . . . 9 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
6260, 61ax-mp 5 . . . . . . . 8 ran (,) ⊆ (topGen‘ran (,))
6362, 3sseqtrri 3952 . . . . . . 7 ran (,) ⊆ 𝐾
6411, 63sstri 3924 . . . . . 6 ((,) “ ({-∞} × ℝ)) ⊆ 𝐾
6556, 64elpwi2 5213 . . . . 5 ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾
6665a1i 11 . . . 4 (𝜑 → ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾)
6751, 59, 66rspcdva 3573 . . 3 (𝜑 → (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
689, 67mpd 15 . 2 (𝜑 → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)
69 simpr 488 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
70 elin 3897 . . . . . . 7 (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7169, 70sylib 221 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7271adantrr 716 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7372simprd 499 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → 𝑣 ∈ Fin)
7471simpld 498 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)))
7574elpwid 4508 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
7633sseli 3911 . . . . . . . . . . . 12 (𝑢 ∈ {-∞} → 𝑢 ∈ ℝ*)
7776adantr 484 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 ∈ ℝ*)
7817sseli 3911 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
7978adantl 485 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
80 mnflt 12506 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → -∞ < 𝑤)
81 xrltnle 10697 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8224, 78, 81sylancr 590 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8380, 82mpbid 235 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → ¬ 𝑤 ≤ -∞)
8483adantl 485 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤 ≤ -∞)
85 elsni 4542 . . . . . . . . . . . . . . 15 (𝑢 ∈ {-∞} → 𝑢 = -∞)
8685adantr 484 . . . . . . . . . . . . . 14 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 = -∞)
8786breq2d 5042 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑤𝑢𝑤 ≤ -∞))
8884, 87mtbird 328 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤𝑢)
89 ioo0 12751 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9076, 78, 89syl2an 598 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9190necon3abid 3023 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) ≠ ∅ ↔ ¬ 𝑤𝑢))
9288, 91mpbird 260 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑢(,)𝑤) ≠ ∅)
93 df-ioo 12730 . . . . . . . . . . . 12 (,) = (𝑦 ∈ ℝ*, 𝑧 ∈ ℝ* ↦ {𝑣 ∈ ℝ* ∣ (𝑦 < 𝑣𝑣 < 𝑧)})
94 idd 24 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥 < 𝑤))
95 xrltle 12530 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥𝑤))
96 idd 24 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢 < 𝑥))
97 xrltle 12530 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢𝑥))
9893, 94, 95, 96, 97ixxub 12747 . . . . . . . . . . 11 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ* ∧ (𝑢(,)𝑤) ≠ ∅) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
9977, 79, 92, 98syl3anc 1368 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
100 simpr 488 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
10199, 100eqeltrd 2890 . . . . . . . . 9 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
102101rgen2 3168 . . . . . . . 8 𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ
103 fveq2 6645 . . . . . . . . . . . 12 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = ((,)‘⟨𝑢, 𝑤⟩))
104 df-ov 7138 . . . . . . . . . . . 12 (𝑢(,)𝑤) = ((,)‘⟨𝑢, 𝑤⟩)
105103, 104eqtr4di 2851 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = (𝑢(,)𝑤))
106105supeq1d 8894 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑤⟩ → sup(((,)‘𝑧), ℝ*, < ) = sup((𝑢(,)𝑤), ℝ*, < ))
107106eleq1d 2874 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑤⟩ → (sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ))
108107ralxp 5676 . . . . . . . 8 (∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ ∀𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
109102, 108mpbir 234 . . . . . . 7 𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ
110 ffn 6487 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11129, 110ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
112 supeq1 8893 . . . . . . . . . 10 (𝑤 = ((,)‘𝑧) → sup(𝑤, ℝ*, < ) = sup(((,)‘𝑧), ℝ*, < ))
113112eleq1d 2874 . . . . . . . . 9 (𝑤 = ((,)‘𝑧) → (sup(𝑤, ℝ*, < ) ∈ ℝ ↔ sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
114113ralima 6978 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
115111, 35, 114mp2an 691 . . . . . . 7 (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ)
116109, 115mpbir 234 . . . . . 6 𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ
117 ssralv 3981 . . . . . 6 (𝑣 ⊆ ((,) “ ({-∞} × ℝ)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ))
11875, 116, 117mpisyl 21 . . . . 5 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
119118adantrr 716 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
120 fimaxre3 11575 . . . 4 ((𝑣 ∈ Fin ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
12173, 119, 120syl2anc 587 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
122 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ran 𝐹 𝑣)
123122sselda 3915 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → 𝑧 𝑣)
124 eluni2 4804 . . . . . . . 8 (𝑧 𝑣 ↔ ∃𝑤𝑣 𝑧𝑤)
125 r19.29r 3217 . . . . . . . . . 10 ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → ∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥))
126 sspwuni 4985 . . . . . . . . . . . . . . . . . . 19 (((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ ↔ ((,) “ ({-∞} × ℝ)) ⊆ ℝ)
12714, 126mpbir 234 . . . . . . . . . . . . . . . . . 18 ((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ
128753ad2ant1 1130 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
129 simp2r 1197 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤𝑣)
130128, 129sseldd 3916 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ ((,) “ ({-∞} × ℝ)))
131127, 130sseldi 3913 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ 𝒫 ℝ)
132131elpwid 4508 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ)
133 simp3l 1198 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑤)
134132, 133sseldd 3916 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ∈ ℝ)
135118r19.21bi 3173 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑤𝑣) → sup(𝑤, ℝ*, < ) ∈ ℝ)
136135adantrl 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
1371363adant3 1129 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
138 simp2l 1196 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑥 ∈ ℝ)
139132, 17sstrdi 3927 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ*)
140 supxrub 12705 . . . . . . . . . . . . . . . 16 ((𝑤 ⊆ ℝ*𝑧𝑤) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
141139, 133, 140syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
142 simp3r 1199 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ≤ 𝑥)
143134, 137, 138, 141, 142letrd 10786 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑥)
1441433expia 1118 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
145144anassrs 471 . . . . . . . . . . . 12 ((((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) ∧ 𝑤𝑣) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
146145rexlimdva 3243 . . . . . . . . . . 11 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
147146adantlrr 720 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
148125, 147syl5 34 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
149148expdimp 456 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ ∃𝑤𝑣 𝑧𝑤) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
150124, 149sylan2b 596 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 𝑣) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
151123, 150syldan 594 . . . . . 6 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
152151ralrimdva 3154 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
1538ffnd 6488 . . . . . . 7 (𝜑𝐹 Fn 𝑋)
154153ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn 𝑋)
155 breq1 5033 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑧𝑥 ↔ (𝐹𝑦) ≤ 𝑥))
156155ralrn 6831 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
157154, 156syl 17 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
158152, 157sylibd 242 . . . 4 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
159158reximdva 3233 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
160121, 159mpd 15 . 2 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
16168, 160rexlimddv 3250 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525  cop 4531   cuni 4800   class class class wbr 5030   × cxp 5517  dom cdm 5519  ran crn 5520  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  supcsup 8888  cr 10525  1c1 10527   + caddc 10529  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  t crest 16686  topGenctg 16703  Topctop 21498  TopOnctopon 21515  TopBasesctb 21550   Cn ccn 21829  Compccmp 21991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cmp 21992
This theorem is referenced by:  evth  23564
  Copyright terms: Public domain W3C validator