MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndth Structured version   Visualization version   GIF version

Theorem bndth 23710
Description: The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -𝐹.) (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
bndth (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem bndth
Dummy variables 𝑣 𝑢 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndth.4 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 bndth.1 . . . . . 6 𝑋 = 𝐽
3 bndth.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
4 retopon 23516 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
53, 4eqeltri 2829 . . . . . . 7 𝐾 ∈ (TopOn‘ℝ)
65toponunii 21667 . . . . . 6 ℝ = 𝐾
72, 6cnf 21997 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
81, 7syl 17 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
98frnd 6512 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
10 unieq 4807 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ((,) “ ({-∞} × ℝ)))
11 imassrn 5914 . . . . . . . . . 10 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
1211unissi 4805 . . . . . . . . 9 ((,) “ ({-∞} × ℝ)) ⊆ ran (,)
13 unirnioo 12923 . . . . . . . . 9 ℝ = ran (,)
1412, 13sseqtrri 3914 . . . . . . . 8 ((,) “ ({-∞} × ℝ)) ⊆ ℝ
15 id 22 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
16 ltp1 11558 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
17 ressxr 10763 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
18 peano2re 10891 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
1917, 18sseldi 3875 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
20 elioomnf 12918 . . . . . . . . . . . 12 ((𝑥 + 1) ∈ ℝ* → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2119, 20syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 ∈ (-∞(,)(𝑥 + 1)) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < (𝑥 + 1))))
2215, 16, 21mpbir2and 713 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ (-∞(,)(𝑥 + 1)))
23 df-ov 7173 . . . . . . . . . . 11 (-∞(,)(𝑥 + 1)) = ((,)‘⟨-∞, (𝑥 + 1)⟩)
24 mnfxr 10776 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
2524elexi 3417 . . . . . . . . . . . . . 14 -∞ ∈ V
2625snid 4552 . . . . . . . . . . . . 13 -∞ ∈ {-∞}
27 opelxpi 5562 . . . . . . . . . . . . 13 ((-∞ ∈ {-∞} ∧ (𝑥 + 1) ∈ ℝ) → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
2826, 18, 27sylancr 590 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ))
29 ioof 12921 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
30 ffun 6507 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 Fun (,)
32 snssi 4696 . . . . . . . . . . . . . . . 16 (-∞ ∈ ℝ* → {-∞} ⊆ ℝ*)
3324, 32ax-mp 5 . . . . . . . . . . . . . . 15 {-∞} ⊆ ℝ*
34 xpss12 5540 . . . . . . . . . . . . . . 15 (({-∞} ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ({-∞} × ℝ) ⊆ (ℝ* × ℝ*))
3533, 17, 34mp2an 692 . . . . . . . . . . . . . 14 ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)
3629fdmi 6516 . . . . . . . . . . . . . 14 dom (,) = (ℝ* × ℝ*)
3735, 36sseqtrri 3914 . . . . . . . . . . . . 13 ({-∞} × ℝ) ⊆ dom (,)
38 funfvima2 7004 . . . . . . . . . . . . 13 ((Fun (,) ∧ ({-∞} × ℝ) ⊆ dom (,)) → (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ))))
3931, 37, 38mp2an 692 . . . . . . . . . . . 12 (⟨-∞, (𝑥 + 1)⟩ ∈ ({-∞} × ℝ) → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4028, 39syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((,)‘⟨-∞, (𝑥 + 1)⟩) ∈ ((,) “ ({-∞} × ℝ)))
4123, 40eqeltrid 2837 . . . . . . . . . 10 (𝑥 ∈ ℝ → (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ)))
42 elunii 4801 . . . . . . . . . 10 ((𝑥 ∈ (-∞(,)(𝑥 + 1)) ∧ (-∞(,)(𝑥 + 1)) ∈ ((,) “ ({-∞} × ℝ))) → 𝑥 ((,) “ ({-∞} × ℝ)))
4322, 41, 42syl2anc 587 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ((,) “ ({-∞} × ℝ)))
4443ssriv 3881 . . . . . . . 8 ℝ ⊆ ((,) “ ({-∞} × ℝ))
4514, 44eqssi 3893 . . . . . . 7 ((,) “ ({-∞} × ℝ)) = ℝ
4610, 45eqtrdi 2789 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝑢 = ℝ)
4746sseq2d 3909 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (ran 𝐹 𝑢 ↔ ran 𝐹 ⊆ ℝ))
48 pweq 4504 . . . . . . 7 (𝑢 = ((,) “ ({-∞} × ℝ)) → 𝒫 𝑢 = 𝒫 ((,) “ ({-∞} × ℝ)))
4948ineq1d 4102 . . . . . 6 (𝑢 = ((,) “ ({-∞} × ℝ)) → (𝒫 𝑢 ∩ Fin) = (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
5049rexeqdv 3317 . . . . 5 (𝑢 = ((,) “ ({-∞} × ℝ)) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣 ↔ ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
5147, 50imbi12d 348 . . . 4 (𝑢 = ((,) “ ({-∞} × ℝ)) → ((ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣) ↔ (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)))
52 bndth.3 . . . . . 6 (𝜑𝐽 ∈ Comp)
53 rncmp 22147 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)
5452, 1, 53syl2anc 587 . . . . 5 (𝜑 → (𝐾t ran 𝐹) ∈ Comp)
55 retop 23514 . . . . . . 7 (topGen‘ran (,)) ∈ Top
563, 55eqeltri 2829 . . . . . 6 𝐾 ∈ Top
576cmpsub 22151 . . . . . 6 ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ℝ) → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5856, 9, 57sylancr 590 . . . . 5 (𝜑 → ((𝐾t ran 𝐹) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣)))
5954, 58mpbid 235 . . . 4 (𝜑 → ∀𝑢 ∈ 𝒫 𝐾(ran 𝐹 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)ran 𝐹 𝑣))
60 retopbas 23513 . . . . . . . . 9 ran (,) ∈ TopBases
61 bastg 21717 . . . . . . . . 9 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
6260, 61ax-mp 5 . . . . . . . 8 ran (,) ⊆ (topGen‘ran (,))
6362, 3sseqtrri 3914 . . . . . . 7 ran (,) ⊆ 𝐾
6411, 63sstri 3886 . . . . . 6 ((,) “ ({-∞} × ℝ)) ⊆ 𝐾
6556, 64elpwi2 5214 . . . . 5 ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾
6665a1i 11 . . . 4 (𝜑 → ((,) “ ({-∞} × ℝ)) ∈ 𝒫 𝐾)
6751, 59, 66rspcdva 3528 . . 3 (𝜑 → (ran 𝐹 ⊆ ℝ → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣))
689, 67mpd 15 . 2 (𝜑 → ∃𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)ran 𝐹 𝑣)
69 simpr 488 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin))
70 elin 3859 . . . . . . 7 (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7169, 70sylib 221 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7271adantrr 717 . . . . 5 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)) ∧ 𝑣 ∈ Fin))
7372simprd 499 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → 𝑣 ∈ Fin)
7471simpld 498 . . . . . . 7 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ∈ 𝒫 ((,) “ ({-∞} × ℝ)))
7574elpwid 4499 . . . . . 6 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
7633sseli 3873 . . . . . . . . . . . 12 (𝑢 ∈ {-∞} → 𝑢 ∈ ℝ*)
7776adantr 484 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 ∈ ℝ*)
7817sseli 3873 . . . . . . . . . . . 12 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
7978adantl 485 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
80 mnflt 12601 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → -∞ < 𝑤)
81 xrltnle 10786 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8224, 78, 81sylancr 590 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-∞ < 𝑤 ↔ ¬ 𝑤 ≤ -∞))
8380, 82mpbid 235 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → ¬ 𝑤 ≤ -∞)
8483adantl 485 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤 ≤ -∞)
85 elsni 4533 . . . . . . . . . . . . . . 15 (𝑢 ∈ {-∞} → 𝑢 = -∞)
8685adantr 484 . . . . . . . . . . . . . 14 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑢 = -∞)
8786breq2d 5042 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑤𝑢𝑤 ≤ -∞))
8884, 87mtbird 328 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ¬ 𝑤𝑢)
89 ioo0 12846 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9076, 78, 89syl2an 599 . . . . . . . . . . . . 13 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) = ∅ ↔ 𝑤𝑢))
9190necon3abid 2970 . . . . . . . . . . . 12 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → ((𝑢(,)𝑤) ≠ ∅ ↔ ¬ 𝑤𝑢))
9288, 91mpbird 260 . . . . . . . . . . 11 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → (𝑢(,)𝑤) ≠ ∅)
93 df-ioo 12825 . . . . . . . . . . . 12 (,) = (𝑦 ∈ ℝ*, 𝑧 ∈ ℝ* ↦ {𝑣 ∈ ℝ* ∣ (𝑦 < 𝑣𝑣 < 𝑧)})
94 idd 24 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥 < 𝑤))
95 xrltle 12625 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑥 < 𝑤𝑥𝑤))
96 idd 24 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢 < 𝑥))
97 xrltle 12625 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑢 < 𝑥𝑢𝑥))
9893, 94, 95, 96, 97ixxub 12842 . . . . . . . . . . 11 ((𝑢 ∈ ℝ*𝑤 ∈ ℝ* ∧ (𝑢(,)𝑤) ≠ ∅) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
9977, 79, 92, 98syl3anc 1372 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) = 𝑤)
100 simpr 488 . . . . . . . . . 10 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
10199, 100eqeltrd 2833 . . . . . . . . 9 ((𝑢 ∈ {-∞} ∧ 𝑤 ∈ ℝ) → sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
102101rgen2 3115 . . . . . . . 8 𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ
103 fveq2 6674 . . . . . . . . . . . 12 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = ((,)‘⟨𝑢, 𝑤⟩))
104 df-ov 7173 . . . . . . . . . . . 12 (𝑢(,)𝑤) = ((,)‘⟨𝑢, 𝑤⟩)
105103, 104eqtr4di 2791 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑤⟩ → ((,)‘𝑧) = (𝑢(,)𝑤))
106105supeq1d 8983 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑤⟩ → sup(((,)‘𝑧), ℝ*, < ) = sup((𝑢(,)𝑤), ℝ*, < ))
107106eleq1d 2817 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑤⟩ → (sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ))
108107ralxp 5684 . . . . . . . 8 (∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ ↔ ∀𝑢 ∈ {-∞}∀𝑤 ∈ ℝ sup((𝑢(,)𝑤), ℝ*, < ) ∈ ℝ)
109102, 108mpbir 234 . . . . . . 7 𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ
110 ffn 6504 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
11129, 110ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
112 supeq1 8982 . . . . . . . . . 10 (𝑤 = ((,)‘𝑧) → sup(𝑤, ℝ*, < ) = sup(((,)‘𝑧), ℝ*, < ))
113112eleq1d 2817 . . . . . . . . 9 (𝑤 = ((,)‘𝑧) → (sup(𝑤, ℝ*, < ) ∈ ℝ ↔ sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
114113ralima 7011 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ({-∞} × ℝ) ⊆ (ℝ* × ℝ*)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ))
115111, 35, 114mp2an 692 . . . . . . 7 (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ ↔ ∀𝑧 ∈ ({-∞} × ℝ)sup(((,)‘𝑧), ℝ*, < ) ∈ ℝ)
116109, 115mpbir 234 . . . . . 6 𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ
117 ssralv 3943 . . . . . 6 (𝑣 ⊆ ((,) “ ({-∞} × ℝ)) → (∀𝑤 ∈ ((,) “ ({-∞} × ℝ))sup(𝑤, ℝ*, < ) ∈ ℝ → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ))
11875, 116, 117mpisyl 21 . . . . 5 ((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
119118adantrr 717 . . . 4 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ)
120 fimaxre3 11664 . . . 4 ((𝑣 ∈ Fin ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
12173, 119, 120syl2anc 587 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥)
122 simplrr 778 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ran 𝐹 𝑣)
123122sselda 3877 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → 𝑧 𝑣)
124 eluni2 4800 . . . . . . . 8 (𝑧 𝑣 ↔ ∃𝑤𝑣 𝑧𝑤)
125 r19.29r 3168 . . . . . . . . . 10 ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → ∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥))
126 sspwuni 4985 . . . . . . . . . . . . . . . . . . 19 (((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ ↔ ((,) “ ({-∞} × ℝ)) ⊆ ℝ)
12714, 126mpbir 234 . . . . . . . . . . . . . . . . . 18 ((,) “ ({-∞} × ℝ)) ⊆ 𝒫 ℝ
128753ad2ant1 1134 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑣 ⊆ ((,) “ ({-∞} × ℝ)))
129 simp2r 1201 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤𝑣)
130128, 129sseldd 3878 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ ((,) “ ({-∞} × ℝ)))
131127, 130sseldi 3875 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ∈ 𝒫 ℝ)
132131elpwid 4499 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ)
133 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑤)
134132, 133sseldd 3878 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ∈ ℝ)
135118r19.21bi 3121 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑤𝑣) → sup(𝑤, ℝ*, < ) ∈ ℝ)
136135adantrl 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
1371363adant3 1133 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ∈ ℝ)
138 simp2l 1200 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑥 ∈ ℝ)
139132, 17sstrdi 3889 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑤 ⊆ ℝ*)
140 supxrub 12800 . . . . . . . . . . . . . . . 16 ((𝑤 ⊆ ℝ*𝑧𝑤) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
141139, 133, 140syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧 ≤ sup(𝑤, ℝ*, < ))
142 simp3r 1203 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → sup(𝑤, ℝ*, < ) ≤ 𝑥)
143134, 137, 138, 141, 142letrd 10875 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣) ∧ (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥)) → 𝑧𝑥)
1441433expia 1122 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ (𝑥 ∈ ℝ ∧ 𝑤𝑣)) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
145144anassrs 471 . . . . . . . . . . . 12 ((((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) ∧ 𝑤𝑣) → ((𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
146145rexlimdva 3194 . . . . . . . . . . 11 (((𝜑𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
147146adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∃𝑤𝑣 (𝑧𝑤 ∧ sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
148125, 147syl5 34 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → ((∃𝑤𝑣 𝑧𝑤 ∧ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥) → 𝑧𝑥))
149148expdimp 456 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ ∃𝑤𝑣 𝑧𝑤) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
150124, 149sylan2b 597 . . . . . . 7 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 𝑣) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
151123, 150syldan 594 . . . . . 6 ((((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ran 𝐹) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥𝑧𝑥))
152151ralrimdva 3101 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
1538ffnd 6505 . . . . . . 7 (𝜑𝐹 Fn 𝑋)
154153ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn 𝑋)
155 breq1 5033 . . . . . . 7 (𝑧 = (𝐹𝑦) → (𝑧𝑥 ↔ (𝐹𝑦) ≤ 𝑥))
156155ralrn 6864 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
157154, 156syl 17 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
158152, 157sylibd 242 . . . 4 (((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) ∧ 𝑥 ∈ ℝ) → (∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
159158reximdva 3184 . . 3 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → (∃𝑥 ∈ ℝ ∀𝑤𝑣 sup(𝑤, ℝ*, < ) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
160121, 159mpd 15 . 2 ((𝜑 ∧ (𝑣 ∈ (𝒫 ((,) “ ({-∞} × ℝ)) ∩ Fin) ∧ ran 𝐹 𝑣)) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
16168, 160rexlimddv 3201 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  cin 3842  wss 3843  c0 4211  𝒫 cpw 4488  {csn 4516  cop 4522   cuni 4796   class class class wbr 5030   × cxp 5523  dom cdm 5525  ran crn 5526  cima 5528  Fun wfun 6333   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7170  Fincfn 8555  supcsup 8977  cr 10614  1c1 10616   + caddc 10618  -∞cmnf 10751  *cxr 10752   < clt 10753  cle 10754  (,)cioo 12821  t crest 16797  topGenctg 16814  Topctop 21644  TopOnctopon 21661  TopBasesctb 21696   Cn ccn 21975  Compccmp 22137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fi 8948  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-ioo 12825  df-rest 16799  df-topgen 16820  df-top 21645  df-topon 21662  df-bases 21697  df-cn 21978  df-cmp 22138
This theorem is referenced by:  evth  23711
  Copyright terms: Public domain W3C validator