MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ord3 Structured version   Visualization version   GIF version

Theorem r1ord3 9286
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.)
Assertion
Ref Expression
r1ord3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))

Proof of Theorem r1ord3
StepHypRef Expression
1 r1fnon 9271 . . . 4 𝑅1 Fn On
21fndmi 6441 . . 3 dom 𝑅1 = On
32eleq2i 2824 . 2 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
42eleq2i 2824 . 2 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
5 r1ord3g 9283 . 2 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
63, 4, 5syl2anbr 602 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wss 3843  dom cdm 5525  Oncon0 6172  cfv 6339  𝑅1cr1 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7602  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-r1 9268
This theorem is referenced by:  bndrank  9345  rankval4  9371  aomclem2  40474
  Copyright terms: Public domain W3C validator