Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1ord3 | Structured version Visualization version GIF version |
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
r1ord3 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 9271 | . . . 4 ⊢ 𝑅1 Fn On | |
2 | 1 | fndmi 6441 | . . 3 ⊢ dom 𝑅1 = On |
3 | 2 | eleq2i 2824 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On) |
4 | 2 | eleq2i 2824 | . 2 ⊢ (𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On) |
5 | r1ord3g 9283 | . 2 ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | |
6 | 3, 4, 5 | syl2anbr 602 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 ⊆ wss 3843 dom cdm 5525 Oncon0 6172 ‘cfv 6339 𝑅1cr1 9266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-om 7602 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-r1 9268 |
This theorem is referenced by: bndrank 9345 rankval4 9371 aomclem2 40474 |
Copyright terms: Public domain | W3C validator |