![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmvalx | Structured version Visualization version GIF version |
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 18447. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfval.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | lsmfval.a | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | lsmfval.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmfval 18437 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
5 | 4 | oveqd 6939 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑇 ⊕ 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈)) |
6 | 1 | fvexi 6460 | . . . . 5 ⊢ 𝐵 ∈ V |
7 | 6 | elpw2 5062 | . . . 4 ⊢ (𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵) |
8 | 6 | elpw2 5062 | . . . 4 ⊢ (𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵) |
9 | mpt2exga 7526 | . . . . . 6 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
10 | rnexg 7376 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) |
12 | mpt2eq12 6992 | . . . . . . 7 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | |
13 | 12 | rneqd 5598 | . . . . . 6 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
14 | eqid 2777 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) | |
15 | 13, 14 | ovmpt2ga 7067 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
16 | 11, 15 | mpd3an3 1535 | . . . 4 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
17 | 7, 8, 16 | syl2anbr 592 | . . 3 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
18 | 5, 17 | sylan9eq 2833 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
19 | 18 | 3impb 1104 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ⊆ wss 3791 𝒫 cpw 4378 ran crn 5356 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 Basecbs 16255 +gcplusg 16338 LSSumclsm 18433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-lsm 18435 |
This theorem is referenced by: lsmelvalx 18439 lsmssv 18442 lsmval 18447 subglsm 18470 |
Copyright terms: Public domain | W3C validator |