![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmvalx | Structured version Visualization version GIF version |
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 19602. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfval.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | lsmfval.a | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | lsmfval.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 1, 2, 3 | lsmfval 19592 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
5 | 4 | oveqd 7437 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑇 ⊕ 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈)) |
6 | 1 | fvexi 6911 | . . . . 5 ⊢ 𝐵 ∈ V |
7 | 6 | elpw2 5347 | . . . 4 ⊢ (𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵) |
8 | 6 | elpw2 5347 | . . . 4 ⊢ (𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵) |
9 | mpoexga 8082 | . . . . . 6 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
10 | rnexg 7910 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) |
12 | mpoeq12 7493 | . . . . . . 7 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | |
13 | 12 | rneqd 5940 | . . . . . 6 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
14 | eqid 2728 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) | |
15 | 13, 14 | ovmpoga 7575 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
16 | 11, 15 | mpd3an3 1459 | . . . 4 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
17 | 7, 8, 16 | syl2anbr 598 | . . 3 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
18 | 5, 17 | sylan9eq 2788 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
19 | 18 | 3impb 1113 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⊆ wss 3947 𝒫 cpw 4603 ran crn 5679 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 Basecbs 17179 +gcplusg 17232 LSSumclsm 19588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-lsm 19590 |
This theorem is referenced by: lsmelvalx 19594 lsmssv 19597 lsmval 19602 smndlsmidm 19610 subglsm 19627 lsmssass 33111 |
Copyright terms: Public domain | W3C validator |