| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmvalx | Structured version Visualization version GIF version | ||
| Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 19564. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmfval.a | ⊢ + = (+g‘𝐺) |
| lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmvalx | ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | lsmfval.a | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | lsmfval.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 4 | 1, 2, 3 | lsmfval 19554 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → ⊕ = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))) |
| 5 | 4 | oveqd 7371 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝑇 ⊕ 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈)) |
| 6 | 1 | fvexi 6844 | . . . . 5 ⊢ 𝐵 ∈ V |
| 7 | 6 | elpw2 5276 | . . . 4 ⊢ (𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵) |
| 8 | 6 | elpw2 5276 | . . . 4 ⊢ (𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵) |
| 9 | mpoexga 8017 | . . . . . 6 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
| 10 | rnexg 7840 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) |
| 12 | mpoeq12 7427 | . . . . . . 7 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) | |
| 13 | 12 | rneqd 5884 | . . . . . 6 ⊢ ((𝑡 = 𝑇 ∧ 𝑢 = 𝑈) → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
| 14 | eqid 2733 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦))) | |
| 15 | 13, 14 | ovmpoga 7508 | . . . . 5 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
| 16 | 11, 15 | mpd3an3 1464 | . . . 4 ⊢ ((𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
| 17 | 7, 8, 16 | syl2anbr 599 | . . 3 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
| 18 | 5, 17 | sylan9eq 2788 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ (𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
| 19 | 18 | 3impb 1114 | 1 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥 + 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4551 ran crn 5622 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 Basecbs 17124 +gcplusg 17165 LSSumclsm 19550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-lsm 19552 |
| This theorem is referenced by: lsmelvalx 19556 lsmssv 19559 lsmval 19564 smndlsmidm 19572 subglsm 19589 lsmssass 33376 |
| Copyright terms: Public domain | W3C validator |