MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmvalx Structured version   Visualization version   GIF version

Theorem lsmvalx 19657
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 19666. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem lsmvalx
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfval.v . . . . 5 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . . 5 + = (+g𝐺)
3 lsmfval.s . . . . 5 = (LSSum‘𝐺)
41, 2, 3lsmfval 19656 . . . 4 (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
54oveqd 7448 . . 3 (𝐺𝑉 → (𝑇 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈))
61fvexi 6920 . . . . 5 𝐵 ∈ V
76elpw2 5334 . . . 4 (𝑇 ∈ 𝒫 𝐵𝑇𝐵)
86elpw2 5334 . . . 4 (𝑈 ∈ 𝒫 𝐵𝑈𝐵)
9 mpoexga 8102 . . . . . 6 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
10 rnexg 7924 . . . . . 6 ((𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
119, 10syl 17 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
12 mpoeq12 7506 . . . . . . 7 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1312rneqd 5949 . . . . . 6 ((𝑡 = 𝑇𝑢 = 𝑈) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
14 eqid 2737 . . . . . 6 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
1513, 14ovmpoga 7587 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1611, 15mpd3an3 1464 . . . 4 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
177, 8, 16syl2anbr 599 . . 3 ((𝑇𝐵𝑈𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
185, 17sylan9eq 2797 . 2 ((𝐺𝑉 ∧ (𝑇𝐵𝑈𝐵)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
19183impb 1115 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  𝒫 cpw 4600  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  +gcplusg 17297  LSSumclsm 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-lsm 19654
This theorem is referenced by:  lsmelvalx  19658  lsmssv  19661  lsmval  19666  smndlsmidm  19674  subglsm  19691  lsmssass  33430
  Copyright terms: Public domain W3C validator