MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmvalx Structured version   Visualization version   GIF version

Theorem lsmvalx 19232
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 19241. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem lsmvalx
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfval.v . . . . 5 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . . 5 + = (+g𝐺)
3 lsmfval.s . . . . 5 = (LSSum‘𝐺)
41, 2, 3lsmfval 19231 . . . 4 (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
54oveqd 7285 . . 3 (𝐺𝑉 → (𝑇 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈))
61fvexi 6781 . . . . 5 𝐵 ∈ V
76elpw2 5268 . . . 4 (𝑇 ∈ 𝒫 𝐵𝑇𝐵)
86elpw2 5268 . . . 4 (𝑈 ∈ 𝒫 𝐵𝑈𝐵)
9 mpoexga 7908 . . . . . 6 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
10 rnexg 7742 . . . . . 6 ((𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
119, 10syl 17 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
12 mpoeq12 7339 . . . . . . 7 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1312rneqd 5841 . . . . . 6 ((𝑡 = 𝑇𝑢 = 𝑈) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
14 eqid 2738 . . . . . 6 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
1513, 14ovmpoga 7418 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1611, 15mpd3an3 1461 . . . 4 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
177, 8, 16syl2anbr 599 . . 3 ((𝑇𝐵𝑈𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
185, 17sylan9eq 2798 . 2 ((𝐺𝑉 ∧ (𝑇𝐵𝑈𝐵)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
19183impb 1114 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3430  wss 3887  𝒫 cpw 4534  ran crn 5586  cfv 6427  (class class class)co 7268  cmpo 7270  Basecbs 16900  +gcplusg 16950  LSSumclsm 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7821  df-2nd 7822  df-lsm 19229
This theorem is referenced by:  lsmelvalx  19233  lsmssv  19236  lsmval  19241  smndlsmidm  19249  subglsm  19267  lsmssass  31576
  Copyright terms: Public domain W3C validator