MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmvalx Structured version   Visualization version   GIF version

Theorem lsmvalx 19681
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval 19690. (Contributed by NM, 28-Jan-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmvalx ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝑇,𝑦   𝑥,𝐺,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem lsmvalx
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmfval.v . . . . 5 𝐵 = (Base‘𝐺)
2 lsmfval.a . . . . 5 + = (+g𝐺)
3 lsmfval.s . . . . 5 = (LSSum‘𝐺)
41, 2, 3lsmfval 19680 . . . 4 (𝐺𝑉 = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))))
54oveqd 7465 . . 3 (𝐺𝑉 → (𝑇 𝑈) = (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈))
61fvexi 6934 . . . . 5 𝐵 ∈ V
76elpw2 5352 . . . 4 (𝑇 ∈ 𝒫 𝐵𝑇𝐵)
86elpw2 5352 . . . 4 (𝑈 ∈ 𝒫 𝐵𝑈𝐵)
9 mpoexga 8118 . . . . . 6 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
10 rnexg 7942 . . . . . 6 ((𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
119, 10syl 17 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V)
12 mpoeq12 7523 . . . . . . 7 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1312rneqd 5963 . . . . . 6 ((𝑡 = 𝑇𝑢 = 𝑈) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
14 eqid 2740 . . . . . 6 (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))
1513, 14ovmpoga 7604 . . . . 5 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵 ∧ ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)) ∈ V) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
1611, 15mpd3an3 1462 . . . 4 ((𝑇 ∈ 𝒫 𝐵𝑈 ∈ 𝒫 𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
177, 8, 16syl2anbr 598 . . 3 ((𝑇𝐵𝑈𝐵) → (𝑇(𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥 + 𝑦)))𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
185, 17sylan9eq 2800 . 2 ((𝐺𝑉 ∧ (𝑇𝐵𝑈𝐵)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
19183impb 1115 1 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  +gcplusg 17311  LSSumclsm 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-lsm 19678
This theorem is referenced by:  lsmelvalx  19682  lsmssv  19685  lsmval  19690  smndlsmidm  19698  subglsm  19715  lsmssass  33395
  Copyright terms: Public domain W3C validator