MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspval Structured version   Visualization version   GIF version

Theorem sspval 28506
Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspval.g 𝐺 = ( +𝑣𝑈)
sspval.s 𝑆 = ( ·𝑠OLD𝑈)
sspval.n 𝑁 = (normCV𝑈)
sspval.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspval (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑆   𝑤,𝑈
Allowed substitution hint:   𝐻(𝑤)

Proof of Theorem sspval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 sspval.h . 2 𝐻 = (SubSp‘𝑈)
2 fveq2 6645 . . . . . . 7 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
3 sspval.g . . . . . . 7 𝐺 = ( +𝑣𝑈)
42, 3eqtr4di 2851 . . . . . 6 (𝑢 = 𝑈 → ( +𝑣𝑢) = 𝐺)
54sseq2d 3947 . . . . 5 (𝑢 = 𝑈 → (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ↔ ( +𝑣𝑤) ⊆ 𝐺))
6 fveq2 6645 . . . . . . 7 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = ( ·𝑠OLD𝑈))
7 sspval.s . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
86, 7eqtr4di 2851 . . . . . 6 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = 𝑆)
98sseq2d 3947 . . . . 5 (𝑢 = 𝑈 → (( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ↔ ( ·𝑠OLD𝑤) ⊆ 𝑆))
10 fveq2 6645 . . . . . . 7 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
11 sspval.n . . . . . . 7 𝑁 = (normCV𝑈)
1210, 11eqtr4di 2851 . . . . . 6 (𝑢 = 𝑈 → (normCV𝑢) = 𝑁)
1312sseq2d 3947 . . . . 5 (𝑢 = 𝑈 → ((normCV𝑤) ⊆ (normCV𝑢) ↔ (normCV𝑤) ⊆ 𝑁))
145, 9, 133anbi123d 1433 . . . 4 (𝑢 = 𝑈 → ((( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢)) ↔ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)))
1514rabbidv 3427 . . 3 (𝑢 = 𝑈 → {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢))} = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
16 df-ssp 28505 . . 3 SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢))})
173fvexi 6659 . . . . . . 7 𝐺 ∈ V
1817pwex 5246 . . . . . 6 𝒫 𝐺 ∈ V
197fvexi 6659 . . . . . . 7 𝑆 ∈ V
2019pwex 5246 . . . . . 6 𝒫 𝑆 ∈ V
2118, 20xpex 7456 . . . . 5 (𝒫 𝐺 × 𝒫 𝑆) ∈ V
2211fvexi 6659 . . . . . 6 𝑁 ∈ V
2322pwex 5246 . . . . 5 𝒫 𝑁 ∈ V
2421, 23xpex 7456 . . . 4 ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁) ∈ V
25 rabss 3999 . . . . 5 ({𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ⊆ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁) ↔ ∀𝑤 ∈ NrmCVec ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) → 𝑤 ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)))
26 fvex 6658 . . . . . . . . . 10 ( +𝑣𝑤) ∈ V
2726elpw 4501 . . . . . . . . 9 (( +𝑣𝑤) ∈ 𝒫 𝐺 ↔ ( +𝑣𝑤) ⊆ 𝐺)
28 fvex 6658 . . . . . . . . . 10 ( ·𝑠OLD𝑤) ∈ V
2928elpw 4501 . . . . . . . . 9 (( ·𝑠OLD𝑤) ∈ 𝒫 𝑆 ↔ ( ·𝑠OLD𝑤) ⊆ 𝑆)
30 opelxpi 5556 . . . . . . . . 9 ((( +𝑣𝑤) ∈ 𝒫 𝐺 ∧ ( ·𝑠OLD𝑤) ∈ 𝒫 𝑆) → ⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩ ∈ (𝒫 𝐺 × 𝒫 𝑆))
3127, 29, 30syl2anbr 601 . . . . . . . 8 ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆) → ⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩ ∈ (𝒫 𝐺 × 𝒫 𝑆))
32 fvex 6658 . . . . . . . . . 10 (normCV𝑤) ∈ V
3332elpw 4501 . . . . . . . . 9 ((normCV𝑤) ∈ 𝒫 𝑁 ↔ (normCV𝑤) ⊆ 𝑁)
3433biimpri 231 . . . . . . . 8 ((normCV𝑤) ⊆ 𝑁 → (normCV𝑤) ∈ 𝒫 𝑁)
35 opelxpi 5556 . . . . . . . 8 ((⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩ ∈ (𝒫 𝐺 × 𝒫 𝑆) ∧ (normCV𝑤) ∈ 𝒫 𝑁) → ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁))
3631, 34, 35syl2an 598 . . . . . . 7 (((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆) ∧ (normCV𝑤) ⊆ 𝑁) → ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁))
37363impa 1107 . . . . . 6 ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) → ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁))
38 eqid 2798 . . . . . . . 8 ( +𝑣𝑤) = ( +𝑣𝑤)
39 eqid 2798 . . . . . . . 8 ( ·𝑠OLD𝑤) = ( ·𝑠OLD𝑤)
40 eqid 2798 . . . . . . . 8 (normCV𝑤) = (normCV𝑤)
4138, 39, 40nvop 28459 . . . . . . 7 (𝑤 ∈ NrmCVec → 𝑤 = ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩)
4241eleq1d 2874 . . . . . 6 (𝑤 ∈ NrmCVec → (𝑤 ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁) ↔ ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)))
4337, 42syl5ibr 249 . . . . 5 (𝑤 ∈ NrmCVec → ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) → 𝑤 ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)))
4425, 43mprgbir 3121 . . . 4 {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ⊆ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)
4524, 44ssexi 5190 . . 3 {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ∈ V
4615, 16, 45fvmpt 6745 . 2 (𝑈 ∈ NrmCVec → (SubSp‘𝑈) = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
471, 46syl5eq 2845 1 (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  wss 3881  𝒫 cpw 4497  cop 4531   × cxp 5517  cfv 6324  NrmCVeccnv 28367   +𝑣 cpv 28368   ·𝑠OLD cns 28370  normCVcnmcv 28373  SubSpcss 28504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-oprab 7139  df-1st 7671  df-2nd 7672  df-vc 28342  df-nv 28375  df-va 28378  df-sm 28380  df-nmcv 28383  df-ssp 28505
This theorem is referenced by:  isssp  28507
  Copyright terms: Public domain W3C validator