MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspval Structured version   Visualization version   GIF version

Theorem sspval 30670
Description: The set of all subspaces of a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspval.g 𝐺 = ( +𝑣𝑈)
sspval.s 𝑆 = ( ·𝑠OLD𝑈)
sspval.n 𝑁 = (normCV𝑈)
sspval.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspval (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑆   𝑤,𝑈
Allowed substitution hint:   𝐻(𝑤)

Proof of Theorem sspval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 sspval.h . 2 𝐻 = (SubSp‘𝑈)
2 fveq2 6886 . . . . . . 7 (𝑢 = 𝑈 → ( +𝑣𝑢) = ( +𝑣𝑈))
3 sspval.g . . . . . . 7 𝐺 = ( +𝑣𝑈)
42, 3eqtr4di 2787 . . . . . 6 (𝑢 = 𝑈 → ( +𝑣𝑢) = 𝐺)
54sseq2d 3996 . . . . 5 (𝑢 = 𝑈 → (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ↔ ( +𝑣𝑤) ⊆ 𝐺))
6 fveq2 6886 . . . . . . 7 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = ( ·𝑠OLD𝑈))
7 sspval.s . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
86, 7eqtr4di 2787 . . . . . 6 (𝑢 = 𝑈 → ( ·𝑠OLD𝑢) = 𝑆)
98sseq2d 3996 . . . . 5 (𝑢 = 𝑈 → (( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ↔ ( ·𝑠OLD𝑤) ⊆ 𝑆))
10 fveq2 6886 . . . . . . 7 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
11 sspval.n . . . . . . 7 𝑁 = (normCV𝑈)
1210, 11eqtr4di 2787 . . . . . 6 (𝑢 = 𝑈 → (normCV𝑢) = 𝑁)
1312sseq2d 3996 . . . . 5 (𝑢 = 𝑈 → ((normCV𝑤) ⊆ (normCV𝑢) ↔ (normCV𝑤) ⊆ 𝑁))
145, 9, 133anbi123d 1437 . . . 4 (𝑢 = 𝑈 → ((( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢)) ↔ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)))
1514rabbidv 3427 . . 3 (𝑢 = 𝑈 → {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢))} = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
16 df-ssp 30669 . . 3 SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢))})
173fvexi 6900 . . . . . . 7 𝐺 ∈ V
1817pwex 5360 . . . . . 6 𝒫 𝐺 ∈ V
197fvexi 6900 . . . . . . 7 𝑆 ∈ V
2019pwex 5360 . . . . . 6 𝒫 𝑆 ∈ V
2118, 20xpex 7755 . . . . 5 (𝒫 𝐺 × 𝒫 𝑆) ∈ V
2211fvexi 6900 . . . . . 6 𝑁 ∈ V
2322pwex 5360 . . . . 5 𝒫 𝑁 ∈ V
2421, 23xpex 7755 . . . 4 ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁) ∈ V
25 rabss 4052 . . . . 5 ({𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ⊆ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁) ↔ ∀𝑤 ∈ NrmCVec ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) → 𝑤 ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)))
26 fvex 6899 . . . . . . . . . 10 ( +𝑣𝑤) ∈ V
2726elpw 4584 . . . . . . . . 9 (( +𝑣𝑤) ∈ 𝒫 𝐺 ↔ ( +𝑣𝑤) ⊆ 𝐺)
28 fvex 6899 . . . . . . . . . 10 ( ·𝑠OLD𝑤) ∈ V
2928elpw 4584 . . . . . . . . 9 (( ·𝑠OLD𝑤) ∈ 𝒫 𝑆 ↔ ( ·𝑠OLD𝑤) ⊆ 𝑆)
30 opelxpi 5702 . . . . . . . . 9 ((( +𝑣𝑤) ∈ 𝒫 𝐺 ∧ ( ·𝑠OLD𝑤) ∈ 𝒫 𝑆) → ⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩ ∈ (𝒫 𝐺 × 𝒫 𝑆))
3127, 29, 30syl2anbr 599 . . . . . . . 8 ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆) → ⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩ ∈ (𝒫 𝐺 × 𝒫 𝑆))
32 fvex 6899 . . . . . . . . . 10 (normCV𝑤) ∈ V
3332elpw 4584 . . . . . . . . 9 ((normCV𝑤) ∈ 𝒫 𝑁 ↔ (normCV𝑤) ⊆ 𝑁)
3433biimpri 228 . . . . . . . 8 ((normCV𝑤) ⊆ 𝑁 → (normCV𝑤) ∈ 𝒫 𝑁)
35 opelxpi 5702 . . . . . . . 8 ((⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩ ∈ (𝒫 𝐺 × 𝒫 𝑆) ∧ (normCV𝑤) ∈ 𝒫 𝑁) → ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁))
3631, 34, 35syl2an 596 . . . . . . 7 (((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆) ∧ (normCV𝑤) ⊆ 𝑁) → ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁))
37363impa 1109 . . . . . 6 ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) → ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁))
38 eqid 2734 . . . . . . . 8 ( +𝑣𝑤) = ( +𝑣𝑤)
39 eqid 2734 . . . . . . . 8 ( ·𝑠OLD𝑤) = ( ·𝑠OLD𝑤)
40 eqid 2734 . . . . . . . 8 (normCV𝑤) = (normCV𝑤)
4138, 39, 40nvop 30623 . . . . . . 7 (𝑤 ∈ NrmCVec → 𝑤 = ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩)
4241eleq1d 2818 . . . . . 6 (𝑤 ∈ NrmCVec → (𝑤 ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁) ↔ ⟨⟨( +𝑣𝑤), ( ·𝑠OLD𝑤)⟩, (normCV𝑤)⟩ ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)))
4337, 42imbitrrid 246 . . . . 5 (𝑤 ∈ NrmCVec → ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) → 𝑤 ∈ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)))
4425, 43mprgbir 3057 . . . 4 {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ⊆ ((𝒫 𝐺 × 𝒫 𝑆) × 𝒫 𝑁)
4524, 44ssexi 5302 . . 3 {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ∈ V
4615, 16, 45fvmpt 6996 . 2 (𝑈 ∈ NrmCVec → (SubSp‘𝑈) = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
471, 46eqtrid 2781 1 (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  {crab 3419  wss 3931  𝒫 cpw 4580  cop 4612   × cxp 5663  cfv 6541  NrmCVeccnv 30531   +𝑣 cpv 30532   ·𝑠OLD cns 30534  normCVcnmcv 30537  SubSpcss 30668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-oprab 7417  df-1st 7996  df-2nd 7997  df-vc 30506  df-nv 30539  df-va 30542  df-sm 30544  df-nmcv 30547  df-ssp 30669
This theorem is referenced by:  isssp  30671
  Copyright terms: Public domain W3C validator