Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof3 Structured version   Visualization version   GIF version

Theorem broutsideof3 36170
Description: Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
Distinct variable groups:   𝑁,𝑐   𝐴,𝑐   𝐵,𝑐   𝑃,𝑐

Proof of Theorem broutsideof3
StepHypRef Expression
1 broutsideof2 36166 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
2 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
3 simpr3 1197 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
4 simpr1 1195 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
5 btwndiff 36071 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
62, 3, 4, 5syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
76adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
8 df-3an 1088 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)))
9 3anass 1094 . . . . . . . . . . . 12 ((((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) ↔ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ (𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)))
10 simpr3 1197 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃𝑐)
1110necomd 2983 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑐𝑃)
12 simp1 1136 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
13 simp23 1209 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
14 simp22 1208 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
15 simp21 1207 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
16 simp3 1138 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
17 simpr1r 1232 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
1812, 14, 15, 13, 17btwncomand 36059 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐴 Btwn ⟨𝐵, 𝑃⟩)
19 simpr2 1196 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
2012, 13, 14, 15, 16, 18, 19btwnexch3and 36065 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
2111, 20, 193jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
228, 9, 21syl2anbr 599 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ (𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
2322expr 456 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
2423an32s 652 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
2524reximdva 3145 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
267, 25mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
2726expr 456 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
28 simpr2 1196 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
29 btwndiff 36071 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
302, 28, 4, 29syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
3130adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
32 3anass 1094 . . . . . . . . . . . 12 ((((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) ↔ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)))
33 simpr3 1197 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃𝑐)
3433necomd 2983 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑐𝑃)
35 simpr2 1196 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
36 simpr1r 1232 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
3712, 13, 15, 14, 36btwncomand 36059 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐵 Btwn ⟨𝐴, 𝑃⟩)
3812, 14, 13, 15, 16, 37, 35btwnexch3and 36065 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
3934, 35, 383jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
408, 32, 39syl2anbr 599 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
4140expr 456 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ((𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4241an32s 652 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4342reximdva 3145 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4431, 43mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
4544expr 456 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4627, 45jaod 859 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
47 simprr1 1222 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑐𝑃)
48 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
49 simplr1 1216 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
50 simplr2 1217 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
51 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
52 simprr2 1223 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
5348, 49, 50, 51, 52btwncomand 36059 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝑐, 𝐴⟩)
54 simplr3 1218 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
55 simprr3 1224 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
5648, 49, 54, 51, 55btwncomand 36059 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝑐, 𝐵⟩)
57 btwnconn2 36146 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
5848, 51, 49, 50, 54, 57syl122anc 1381 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
5958adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6047, 53, 56, 59mp3and 1466 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
6160expr 456 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑃𝐵𝑃)) → ((𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6261an32s 652 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6362rexlimdva 3133 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6446, 63impbid 212 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ↔ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
6564pm5.32da 579 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
66 df-3an 1088 . . 3 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
67 df-3an 1088 . . 3 ((𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
6865, 66, 673bitr4g 314 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
691, 68bitrd 279 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2111  wne 2928  wrex 3056  cop 4579   class class class wbr 5089  cfv 6481  cn 12125  𝔼cee 28866   Btwn cbtwn 28867  OutsideOfcoutsideof 36163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ee 28869  df-btwn 28870  df-cgr 28871  df-ofs 36027  df-colinear 36083  df-ifs 36084  df-cgr3 36085  df-fs 36086  df-outsideof 36164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator