Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof3 Structured version   Visualization version   GIF version

Theorem broutsideof3 36110
Description: Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
Distinct variable groups:   𝑁,𝑐   𝐴,𝑐   𝐵,𝑐   𝑃,𝑐

Proof of Theorem broutsideof3
StepHypRef Expression
1 broutsideof2 36106 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
2 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
3 simpr3 1197 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
4 simpr1 1195 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
5 btwndiff 36011 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
62, 3, 4, 5syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
76adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
8 df-3an 1088 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)))
9 3anass 1094 . . . . . . . . . . . 12 ((((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) ↔ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ (𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)))
10 simpr3 1197 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃𝑐)
1110necomd 2980 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑐𝑃)
12 simp1 1136 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
13 simp23 1209 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
14 simp22 1208 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
15 simp21 1207 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
16 simp3 1138 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
17 simpr1r 1232 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
1812, 14, 15, 13, 17btwncomand 35999 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐴 Btwn ⟨𝐵, 𝑃⟩)
19 simpr2 1196 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
2012, 13, 14, 15, 16, 18, 19btwnexch3and 36005 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
2111, 20, 193jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
228, 9, 21syl2anbr 599 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ (𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
2322expr 456 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
2423an32s 652 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
2524reximdva 3142 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
267, 25mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
2726expr 456 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
28 simpr2 1196 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
29 btwndiff 36011 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
302, 28, 4, 29syl3anc 1373 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
3130adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
32 3anass 1094 . . . . . . . . . . . 12 ((((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) ↔ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)))
33 simpr3 1197 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃𝑐)
3433necomd 2980 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑐𝑃)
35 simpr2 1196 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
36 simpr1r 1232 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
3712, 13, 15, 14, 36btwncomand 35999 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐵 Btwn ⟨𝐴, 𝑃⟩)
3812, 14, 13, 15, 16, 37, 35btwnexch3and 36005 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
3934, 35, 383jca 1128 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
408, 32, 39syl2anbr 599 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
4140expr 456 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ((𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4241an32s 652 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4342reximdva 3142 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4431, 43mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
4544expr 456 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4627, 45jaod 859 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
47 simprr1 1222 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑐𝑃)
48 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
49 simplr1 1216 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
50 simplr2 1217 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
51 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
52 simprr2 1223 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
5348, 49, 50, 51, 52btwncomand 35999 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝑐, 𝐴⟩)
54 simplr3 1218 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
55 simprr3 1224 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
5648, 49, 54, 51, 55btwncomand 35999 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝑐, 𝐵⟩)
57 btwnconn2 36086 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
5848, 51, 49, 50, 54, 57syl122anc 1381 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
5958adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6047, 53, 56, 59mp3and 1466 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
6160expr 456 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑃𝐵𝑃)) → ((𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6261an32s 652 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6362rexlimdva 3130 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6446, 63impbid 212 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ↔ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
6564pm5.32da 579 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
66 df-3an 1088 . . 3 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
67 df-3an 1088 . . 3 ((𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
6865, 66, 673bitr4g 314 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
691, 68bitrd 279 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2109  wne 2925  wrex 3053  cop 4583   class class class wbr 5092  cfv 6482  cn 12128  𝔼cee 28833   Btwn cbtwn 28834  OutsideOfcoutsideof 36103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ee 28836  df-btwn 28837  df-cgr 28838  df-ofs 35967  df-colinear 36023  df-ifs 36024  df-cgr3 36025  df-fs 36026  df-outsideof 36104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator