![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > sshjval3 | Structured version Visualization version GIF version |
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice Cℋ. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sshjval3 | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 31028 | . . . . . 6 ⊢ ℋ ∈ V | |
2 | 1 | elpw2 5340 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
3 | 1 | elpw2 5340 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ) |
4 | uniprg 4928 | . . . . 5 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
5 | 2, 3, 4 | syl2anbr 599 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
6 | 5 | fveq2d 6911 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘∪ {𝐴, 𝐵}) = (⊥‘(𝐴 ∪ 𝐵))) |
7 | 6 | fveq2d 6911 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘(⊥‘∪ {𝐴, 𝐵})) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
8 | prssi 4826 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) | |
9 | 2, 3, 8 | syl2anbr 599 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) |
10 | hsupval 31363 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 ℋ → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) |
12 | sshjval 31379 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
13 | 7, 11, 12 | 3eqtr4rd 2786 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 𝒫 cpw 4605 {cpr 4633 ∪ cuni 4912 ‘cfv 6563 (class class class)co 7431 ℋchba 30948 ⊥cort 30959 ∨ℋ chj 30962 ∨ℋ chsup 30963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-chj 31339 df-chsup 31340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |