HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval3 Structured version   Visualization version   GIF version

Theorem sshjval3 29716
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice C. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = ( ‘{𝐴, 𝐵}))

Proof of Theorem sshjval3
StepHypRef Expression
1 ax-hilex 29361 . . . . . 6 ℋ ∈ V
21elpw2 5269 . . . . 5 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
31elpw2 5269 . . . . 5 (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 uniprg 4856 . . . . 5 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} = (𝐴𝐵))
52, 3, 4syl2anbr 599 . . . 4 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} = (𝐴𝐵))
65fveq2d 6778 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘ {𝐴, 𝐵}) = (⊥‘(𝐴𝐵)))
76fveq2d 6778 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘(⊥‘ {𝐴, 𝐵})) = (⊥‘(⊥‘(𝐴𝐵))))
8 prssi 4754 . . . 4 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ)
92, 3, 8syl2anbr 599 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ)
10 hsupval 29696 . . 3 ({𝐴, 𝐵} ⊆ 𝒫 ℋ → ( ‘{𝐴, 𝐵}) = (⊥‘(⊥‘ {𝐴, 𝐵})))
119, 10syl 17 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( ‘{𝐴, 𝐵}) = (⊥‘(⊥‘ {𝐴, 𝐵})))
12 sshjval 29712 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
137, 11, 123eqtr4rd 2789 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = ( ‘{𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cun 3885  wss 3887  𝒫 cpw 4533  {cpr 4563   cuni 4839  cfv 6433  (class class class)co 7275  chba 29281  cort 29292   chj 29295   chsup 29296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-chj 29672  df-chsup 29673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator