Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > sshjval3 | Structured version Visualization version GIF version |
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice Cℋ. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sshjval3 | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 29361 | . . . . . 6 ⊢ ℋ ∈ V | |
2 | 1 | elpw2 5269 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
3 | 1 | elpw2 5269 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ) |
4 | uniprg 4856 | . . . . 5 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
5 | 2, 3, 4 | syl2anbr 599 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
6 | 5 | fveq2d 6778 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘∪ {𝐴, 𝐵}) = (⊥‘(𝐴 ∪ 𝐵))) |
7 | 6 | fveq2d 6778 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘(⊥‘∪ {𝐴, 𝐵})) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
8 | prssi 4754 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) | |
9 | 2, 3, 8 | syl2anbr 599 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) |
10 | hsupval 29696 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 ℋ → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) |
12 | sshjval 29712 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
13 | 7, 11, 12 | 3eqtr4rd 2789 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 𝒫 cpw 4533 {cpr 4563 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 ℋchba 29281 ⊥cort 29292 ∨ℋ chj 29295 ∨ℋ chsup 29296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-chj 29672 df-chsup 29673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |