HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval3 Structured version   Visualization version   GIF version

Theorem sshjval3 31386
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice C. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = ( ‘{𝐴, 𝐵}))

Proof of Theorem sshjval3
StepHypRef Expression
1 ax-hilex 31031 . . . . . 6 ℋ ∈ V
21elpw2 5352 . . . . 5 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
31elpw2 5352 . . . . 5 (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 uniprg 4947 . . . . 5 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} = (𝐴𝐵))
52, 3, 4syl2anbr 598 . . . 4 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} = (𝐴𝐵))
65fveq2d 6924 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘ {𝐴, 𝐵}) = (⊥‘(𝐴𝐵)))
76fveq2d 6924 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘(⊥‘ {𝐴, 𝐵})) = (⊥‘(⊥‘(𝐴𝐵))))
8 prssi 4846 . . . 4 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ)
92, 3, 8syl2anbr 598 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ)
10 hsupval 31366 . . 3 ({𝐴, 𝐵} ⊆ 𝒫 ℋ → ( ‘{𝐴, 𝐵}) = (⊥‘(⊥‘ {𝐴, 𝐵})))
119, 10syl 17 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( ‘{𝐴, 𝐵}) = (⊥‘(⊥‘ {𝐴, 𝐵})))
12 sshjval 31382 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
137, 11, 123eqtr4rd 2791 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = ( ‘{𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  wss 3976  𝒫 cpw 4622  {cpr 4650   cuni 4931  cfv 6573  (class class class)co 7448  chba 30951  cort 30962   chj 30965   chsup 30966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-chj 31342  df-chsup 31343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator