|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > sshjval3 | Structured version Visualization version GIF version | ||
| Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice Cℋ. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sshjval3 | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-hilex 31019 | . . . . . 6 ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 5333 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) | 
| 3 | 1 | elpw2 5333 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ) | 
| 4 | uniprg 4922 | . . . . 5 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anbr 599 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | 
| 6 | 5 | fveq2d 6909 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘∪ {𝐴, 𝐵}) = (⊥‘(𝐴 ∪ 𝐵))) | 
| 7 | 6 | fveq2d 6909 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘(⊥‘∪ {𝐴, 𝐵})) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | 
| 8 | prssi 4820 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) | |
| 9 | 2, 3, 8 | syl2anbr 599 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) | 
| 10 | hsupval 31354 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 ℋ → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) | 
| 12 | sshjval 31370 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
| 13 | 7, 11, 12 | 3eqtr4rd 2787 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 ⊆ wss 3950 𝒫 cpw 4599 {cpr 4627 ∪ cuni 4906 ‘cfv 6560 (class class class)co 7432 ℋchba 30939 ⊥cort 30950 ∨ℋ chj 30953 ∨ℋ chsup 30954 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-hilex 31019 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-chj 31330 df-chsup 31331 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |