| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > sshjval3 | Structured version Visualization version GIF version | ||
| Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice Cℋ. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sshjval3 | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30928 | . . . . . 6 ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 5289 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ) |
| 3 | 1 | elpw2 5289 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ) |
| 4 | uniprg 4887 | . . . . 5 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anbr 599 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 6 | 5 | fveq2d 6862 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘∪ {𝐴, 𝐵}) = (⊥‘(𝐴 ∪ 𝐵))) |
| 7 | 6 | fveq2d 6862 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘(⊥‘∪ {𝐴, 𝐵})) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| 8 | prssi 4785 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) | |
| 9 | 2, 3, 8 | syl2anbr 599 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ) |
| 10 | hsupval 31263 | . . 3 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 ℋ → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( ∨ℋ ‘{𝐴, 𝐵}) = (⊥‘(⊥‘∪ {𝐴, 𝐵}))) |
| 12 | sshjval 31279 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
| 13 | 7, 11, 12 | 3eqtr4rd 2775 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = ( ∨ℋ ‘{𝐴, 𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 {cpr 4591 ∪ cuni 4871 ‘cfv 6511 (class class class)co 7387 ℋchba 30848 ⊥cort 30859 ∨ℋ chj 30862 ∨ℋ chsup 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-chj 31239 df-chsup 31240 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |