HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval3 Structured version   Visualization version   GIF version

Theorem sshjval3 31283
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice C. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = ( ‘{𝐴, 𝐵}))

Proof of Theorem sshjval3
StepHypRef Expression
1 ax-hilex 30928 . . . . . 6 ℋ ∈ V
21elpw2 5289 . . . . 5 (𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ)
31elpw2 5289 . . . . 5 (𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ)
4 uniprg 4887 . . . . 5 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} = (𝐴𝐵))
52, 3, 4syl2anbr 599 . . . 4 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} = (𝐴𝐵))
65fveq2d 6862 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘ {𝐴, 𝐵}) = (⊥‘(𝐴𝐵)))
76fveq2d 6862 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (⊥‘(⊥‘ {𝐴, 𝐵})) = (⊥‘(⊥‘(𝐴𝐵))))
8 prssi 4785 . . . 4 ((𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ)
92, 3, 8syl2anbr 599 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → {𝐴, 𝐵} ⊆ 𝒫 ℋ)
10 hsupval 31263 . . 3 ({𝐴, 𝐵} ⊆ 𝒫 ℋ → ( ‘{𝐴, 𝐵}) = (⊥‘(⊥‘ {𝐴, 𝐵})))
119, 10syl 17 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ( ‘{𝐴, 𝐵}) = (⊥‘(⊥‘ {𝐴, 𝐵})))
12 sshjval 31279 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
137, 11, 123eqtr4rd 2775 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 𝐵) = ( ‘{𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3912  wss 3914  𝒫 cpw 4563  {cpr 4591   cuni 4871  cfv 6511  (class class class)co 7387  chba 30848  cort 30859   chj 30862   chsup 30863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-chj 31239  df-chsup 31240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator