| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > angval | Structured version Visualization version GIF version | ||
| Description: Define the angle function, which takes two complex numbers, treated as vectors from the origin, and returns the angle between them, in the range ( − π, π]. To convert from the geometry notation, 𝑚𝐴𝐵𝐶, the measure of the angle with legs 𝐴𝐵, 𝐶𝐵 where 𝐶 is more counterclockwise for positive angles, is represented by ((𝐶 − 𝐵)𝐹(𝐴 − 𝐵)). (Contributed by Mario Carneiro, 23-Sep-2014.) |
| Ref | Expression |
|---|---|
| ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| Ref | Expression |
|---|---|
| angval | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4753 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
| 2 | eldifsn 4753 | . 2 ⊢ (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
| 3 | oveq12 7399 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝑦 / 𝑥) = (𝐵 / 𝐴)) | |
| 4 | 3 | ancoms 458 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 / 𝑥) = (𝐵 / 𝐴)) |
| 5 | 4 | fveq2d 6865 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (log‘(𝑦 / 𝑥)) = (log‘(𝐵 / 𝐴))) |
| 6 | 5 | fveq2d 6865 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (ℑ‘(log‘(𝑦 / 𝑥))) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
| 7 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 8 | fvex 6874 | . . 3 ⊢ (ℑ‘(log‘(𝐵 / 𝐴))) ∈ V | |
| 9 | 6, 7, 8 | ovmpoa 7547 | . 2 ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
| 10 | 1, 2, 9 | syl2anbr 599 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 0cc0 11075 / cdiv 11842 ℑcim 15071 logclog 26470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: angcan 26719 angvald 26721 |
| Copyright terms: Public domain | W3C validator |