MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angval Structured version   Visualization version   GIF version

Theorem angval 26741
Description: Define the angle function, which takes two complex numbers, treated as vectors from the origin, and returns the angle between them, in the range ( − π, π]. To convert from the geometry notation, 𝑚𝐴𝐵𝐶, the measure of the angle with legs 𝐴𝐵, 𝐶𝐵 where 𝐶 is more counterclockwise for positive angles, is represented by ((𝐶𝐵)𝐹(𝐴𝐵)). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypothesis
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
Assertion
Ref Expression
angval (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem angval
StepHypRef Expression
1 eldifsn 4739 . 2 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
2 eldifsn 4739 . 2 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3 oveq12 7363 . . . . . 6 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝑦 / 𝑥) = (𝐵 / 𝐴))
43ancoms 458 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 / 𝑥) = (𝐵 / 𝐴))
54fveq2d 6834 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (log‘(𝑦 / 𝑥)) = (log‘(𝐵 / 𝐴)))
65fveq2d 6834 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (ℑ‘(log‘(𝑦 / 𝑥))) = (ℑ‘(log‘(𝐵 / 𝐴))))
7 ang.1 . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
8 fvex 6843 . . 3 (ℑ‘(log‘(𝐵 / 𝐴))) ∈ V
96, 7, 8ovmpoa 7509 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴))))
101, 2, 9syl2anbr 599 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  {csn 4577  cfv 6488  (class class class)co 7354  cmpo 7356  cc 11013  0cc0 11015   / cdiv 11783  cim 15009  logclog 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359
This theorem is referenced by:  angcan  26742  angvald  26744
  Copyright terms: Public domain W3C validator