Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > angval | Structured version Visualization version GIF version |
Description: Define the angle function, which takes two complex numbers, treated as vectors from the origin, and returns the angle between them, in the range ( − π, π]. To convert from the geometry notation, 𝑚𝐴𝐵𝐶, the measure of the angle with legs 𝐴𝐵, 𝐶𝐵 where 𝐶 is more counterclockwise for positive angles, is represented by ((𝐶 − 𝐵)𝐹(𝐴 − 𝐵)). (Contributed by Mario Carneiro, 23-Sep-2014.) |
Ref | Expression |
---|---|
ang.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
Ref | Expression |
---|---|
angval | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4720 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
2 | eldifsn 4720 | . 2 ⊢ (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
3 | oveq12 7284 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝑦 / 𝑥) = (𝐵 / 𝐴)) | |
4 | 3 | ancoms 459 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 / 𝑥) = (𝐵 / 𝐴)) |
5 | 4 | fveq2d 6778 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (log‘(𝑦 / 𝑥)) = (log‘(𝐵 / 𝐴))) |
6 | 5 | fveq2d 6778 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (ℑ‘(log‘(𝑦 / 𝑥))) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
7 | ang.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
8 | fvex 6787 | . . 3 ⊢ (ℑ‘(log‘(𝐵 / 𝐴))) ∈ V | |
9 | 6, 7, 8 | ovmpoa 7428 | . 2 ⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ (ℂ ∖ {0})) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
10 | 1, 2, 9 | syl2anbr 599 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ℂcc 10869 0cc0 10871 / cdiv 11632 ℑcim 14809 logclog 25710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: angcan 25952 angvald 25954 |
Copyright terms: Public domain | W3C validator |