| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nprmi | Structured version Visualization version GIF version | ||
| Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| Ref | Expression |
|---|---|
| nprmi.1 | ⊢ 𝐴 ∈ ℕ |
| nprmi.2 | ⊢ 𝐵 ∈ ℕ |
| nprmi.3 | ⊢ 1 < 𝐴 |
| nprmi.4 | ⊢ 1 < 𝐵 |
| nprmi.5 | ⊢ (𝐴 · 𝐵) = 𝑁 |
| Ref | Expression |
|---|---|
| nprmi | ⊢ ¬ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nprmi.1 | . . 3 ⊢ 𝐴 ∈ ℕ | |
| 2 | nprmi.3 | . . 3 ⊢ 1 < 𝐴 | |
| 3 | nprmi.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 4 | nprmi.4 | . . 3 ⊢ 1 < 𝐵 | |
| 5 | eluz2b2 12823 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
| 6 | eluz2b2 12823 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵)) | |
| 7 | nprm 16603 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) | |
| 8 | 5, 6, 7 | syl2anbr 599 | . . 3 ⊢ (((𝐴 ∈ ℕ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℕ ∧ 1 < 𝐵)) → ¬ (𝐴 · 𝐵) ∈ ℙ) |
| 9 | 1, 2, 3, 4, 8 | mp4an 693 | . 2 ⊢ ¬ (𝐴 · 𝐵) ∈ ℙ |
| 10 | nprmi.5 | . . 3 ⊢ (𝐴 · 𝐵) = 𝑁 | |
| 11 | 10 | eleq1i 2824 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℙ ↔ 𝑁 ∈ ℙ) |
| 12 | 9, 11 | mtbi 322 | 1 ⊢ ¬ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 1c1 11016 · cmul 11020 < clt 11155 ℕcn 12134 2c2 12189 ℤ≥cuz 12740 ℙcprime 16586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-dvds 16168 df-prm 16587 |
| This theorem is referenced by: 4nprm 16610 dec5nprm 16982 dec2nprm 16983 6nprm 17025 8nprm 17027 9nprm 17028 10nprm 17029 prmlem2 17035 fmtno4prmfac193 47700 fmtno5nprm 47710 |
| Copyright terms: Public domain | W3C validator |