MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccntr Structured version   Visualization version   GIF version

Theorem icccntr 13453
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
icccntr.1 (𝐴 / 𝑅) = 𝐶
icccntr.2 (𝐵 / 𝑅) = 𝐷
Assertion
Ref Expression
icccntr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem icccntr
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rerpdivcl 12983 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 / 𝑅) ∈ ℝ)
31, 22thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
43adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
5 elrp 12953 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
6 lediv1 12048 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
75, 6syl3an3b 1407 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
873expb 1120 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
98adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
10 icccntr.1 . . . . 5 (𝐴 / 𝑅) = 𝐶
1110breq1i 5114 . . . 4 ((𝐴 / 𝑅) ≤ (𝑋 / 𝑅) ↔ 𝐶 ≤ (𝑋 / 𝑅))
129, 11bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 / 𝑅)))
13 lediv1 12048 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
145, 13syl3an3b 1407 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
15143expb 1120 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1615an12s 649 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1716adantll 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
18 icccntr.2 . . . . 5 (𝐵 / 𝑅) = 𝐷
1918breq2i 5115 . . . 4 ((𝑋 / 𝑅) ≤ (𝐵 / 𝑅) ↔ (𝑋 / 𝑅) ≤ 𝐷)
2017, 19bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ 𝐷))
214, 12, 203anbi123d 1438 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
22 elicc2 13372 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2322adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
24 rerpdivcl 12983 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴 / 𝑅) ∈ ℝ)
2510, 24eqeltrrid 2833 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐶 ∈ ℝ)
26 rerpdivcl 12983 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐵 / 𝑅) ∈ ℝ)
2718, 26eqeltrrid 2833 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ ℝ)
28 elicc2 13372 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
2925, 27, 28syl2an 596 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3029anandirs 679 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3130adantrl 716 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3221, 23, 313bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068   < clt 11208  cle 11209   / cdiv 11835  +crp 12951  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-rp 12952  df-icc 13313
This theorem is referenced by:  icccntri  13454
  Copyright terms: Public domain W3C validator