MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccntr Structured version   Visualization version   GIF version

Theorem icccntr 12605
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
icccntr.1 (𝐴 / 𝑅) = 𝐶
icccntr.2 (𝐵 / 𝑅) = 𝐷
Assertion
Ref Expression
icccntr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem icccntr
StepHypRef Expression
1 simpl 476 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rerpdivcl 12144 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 / 𝑅) ∈ ℝ)
31, 22thd 257 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
43adantl 475 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
5 elrp 12114 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
6 lediv1 11218 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
75, 6syl3an3b 1528 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
873expb 1153 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
98adantlr 706 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
10 icccntr.1 . . . . 5 (𝐴 / 𝑅) = 𝐶
1110breq1i 4880 . . . 4 ((𝐴 / 𝑅) ≤ (𝑋 / 𝑅) ↔ 𝐶 ≤ (𝑋 / 𝑅))
129, 11syl6bb 279 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 / 𝑅)))
13 lediv1 11218 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
145, 13syl3an3b 1528 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
15143expb 1153 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1615an12s 639 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1716adantll 705 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
18 icccntr.2 . . . . 5 (𝐵 / 𝑅) = 𝐷
1918breq2i 4881 . . . 4 ((𝑋 / 𝑅) ≤ (𝐵 / 𝑅) ↔ (𝑋 / 𝑅) ≤ 𝐷)
2017, 19syl6bb 279 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ 𝐷))
214, 12, 203anbi123d 1564 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
22 elicc2 12526 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2322adantr 474 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
24 rerpdivcl 12144 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴 / 𝑅) ∈ ℝ)
2510, 24syl5eqelr 2911 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐶 ∈ ℝ)
26 rerpdivcl 12144 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐵 / 𝑅) ∈ ℝ)
2718, 26syl5eqelr 2911 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ ℝ)
28 elicc2 12526 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
2925, 27, 28syl2an 589 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3029anandirs 669 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3130adantrl 707 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3221, 23, 313bitr4d 303 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164   class class class wbr 4873  (class class class)co 6905  cr 10251  0cc0 10252   < clt 10391  cle 10392   / cdiv 11009  +crp 12112  [,]cicc 12466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-rp 12113  df-icc 12470
This theorem is referenced by:  icccntri  12606
  Copyright terms: Public domain W3C validator