MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccntr Structured version   Visualization version   GIF version

Theorem icccntr 13387
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
icccntr.1 (𝐴 / 𝑅) = 𝐶
icccntr.2 (𝐵 / 𝑅) = 𝐷
Assertion
Ref Expression
icccntr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem icccntr
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rerpdivcl 12917 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 / 𝑅) ∈ ℝ)
31, 22thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
43adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
5 elrp 12887 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
6 lediv1 11982 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
75, 6syl3an3b 1407 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
873expb 1120 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
98adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
10 icccntr.1 . . . . 5 (𝐴 / 𝑅) = 𝐶
1110breq1i 5093 . . . 4 ((𝐴 / 𝑅) ≤ (𝑋 / 𝑅) ↔ 𝐶 ≤ (𝑋 / 𝑅))
129, 11bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 / 𝑅)))
13 lediv1 11982 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
145, 13syl3an3b 1407 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
15143expb 1120 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1615an12s 649 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1716adantll 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
18 icccntr.2 . . . . 5 (𝐵 / 𝑅) = 𝐷
1918breq2i 5094 . . . 4 ((𝑋 / 𝑅) ≤ (𝐵 / 𝑅) ↔ (𝑋 / 𝑅) ≤ 𝐷)
2017, 19bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ 𝐷))
214, 12, 203anbi123d 1438 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
22 elicc2 13306 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2322adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
24 rerpdivcl 12917 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴 / 𝑅) ∈ ℝ)
2510, 24eqeltrrid 2836 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐶 ∈ ℝ)
26 rerpdivcl 12917 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐵 / 𝑅) ∈ ℝ)
2718, 26eqeltrrid 2836 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ ℝ)
28 elicc2 13306 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
2925, 27, 28syl2an 596 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3029anandirs 679 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3130adantrl 716 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3221, 23, 313bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  (class class class)co 7341  cr 11000  0cc0 11001   < clt 11141  cle 11142   / cdiv 11769  +crp 12885  [,]cicc 13243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-rp 12886  df-icc 13247
This theorem is referenced by:  icccntri  13388
  Copyright terms: Public domain W3C validator