MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccntr Structured version   Visualization version   GIF version

Theorem icccntr 13416
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
icccntr.1 (𝐴 / 𝑅) = 𝐶
icccntr.2 (𝐵 / 𝑅) = 𝐷
Assertion
Ref Expression
icccntr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem icccntr
StepHypRef Expression
1 simpl 484 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rerpdivcl 12952 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 / 𝑅) ∈ ℝ)
31, 22thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
43adantl 483 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 / 𝑅) ∈ ℝ))
5 elrp 12924 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
6 lediv1 12027 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
75, 6syl3an3b 1406 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
873expb 1121 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
98adantlr 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 / 𝑅) ≤ (𝑋 / 𝑅)))
10 icccntr.1 . . . . 5 (𝐴 / 𝑅) = 𝐶
1110breq1i 5117 . . . 4 ((𝐴 / 𝑅) ≤ (𝑋 / 𝑅) ↔ 𝐶 ≤ (𝑋 / 𝑅))
129, 11bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 / 𝑅)))
13 lediv1 12027 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
145, 13syl3an3b 1406 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
15143expb 1121 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1615an12s 648 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
1716adantll 713 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ (𝐵 / 𝑅)))
18 icccntr.2 . . . . 5 (𝐵 / 𝑅) = 𝐷
1918breq2i 5118 . . . 4 ((𝑋 / 𝑅) ≤ (𝐵 / 𝑅) ↔ (𝑋 / 𝑅) ≤ 𝐷)
2017, 19bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 / 𝑅) ≤ 𝐷))
214, 12, 203anbi123d 1437 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
22 elicc2 13336 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2322adantr 482 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
24 rerpdivcl 12952 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴 / 𝑅) ∈ ℝ)
2510, 24eqeltrrid 2843 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐶 ∈ ℝ)
26 rerpdivcl 12952 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐵 / 𝑅) ∈ ℝ)
2718, 26eqeltrrid 2843 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ ℝ)
28 elicc2 13336 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
2925, 27, 28syl2an 597 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3029anandirs 678 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3130adantrl 715 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 / 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 / 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 / 𝑅) ∧ (𝑋 / 𝑅) ≤ 𝐷)))
3221, 23, 313bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5110  (class class class)co 7362  cr 11057  0cc0 11058   < clt 11196  cle 11197   / cdiv 11819  +crp 12922  [,]cicc 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-rp 12923  df-icc 13278
This theorem is referenced by:  icccntri  13417
  Copyright terms: Public domain W3C validator