MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcdisj2 Structured version   Visualization version   GIF version

Theorem 2ndcdisj2 21470
Description: Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
2ndcdisj2 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem 2ndcdisj2
StepHypRef Expression
1 df-rmo 3103 . . 3 (∃*𝑥𝐴 𝑦𝑥 ↔ ∃*𝑥(𝑥𝐴𝑦𝑥))
21albii 1907 . 2 (∀𝑦∃*𝑥𝐴 𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥))
3 undif2 4237 . . . . . 6 ({∅} ∪ (𝐴 ∖ {∅})) = ({∅} ∪ 𝐴)
4 omex 8784 . . . . . . . 8 ω ∈ V
5 peano1 7312 . . . . . . . . 9 ∅ ∈ ω
6 snssi 4526 . . . . . . . . 9 (∅ ∈ ω → {∅} ⊆ ω)
75, 6ax-mp 5 . . . . . . . 8 {∅} ⊆ ω
8 ssdomg 8235 . . . . . . . 8 (ω ∈ V → ({∅} ⊆ ω → {∅} ≼ ω))
94, 7, 8mp2 9 . . . . . . 7 {∅} ≼ ω
10 id 22 . . . . . . . 8 (𝐽 ∈ 2nd𝜔 → 𝐽 ∈ 2nd𝜔)
11 ssdif 3941 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}))
12 dfss3 3784 . . . . . . . . 9 ((𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}) ↔ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
1311, 12sylib 209 . . . . . . . 8 (𝐴𝐽 → ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
14 eldifi 3928 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ {∅}) → 𝑥𝐴)
1514anim1i 604 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥) → (𝑥𝐴𝑦𝑥))
1615moimi 2683 . . . . . . . . 9 (∃*𝑥(𝑥𝐴𝑦𝑥) → ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1716alimi 1899 . . . . . . . 8 (∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥) → ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
18 df-rmo 3103 . . . . . . . . . 10 (∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1918albii 1907 . . . . . . . . 9 (∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
20 2ndcdisj 21469 . . . . . . . . 9 ((𝐽 ∈ 2nd𝜔 ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥) → (𝐴 ∖ {∅}) ≼ ω)
2119, 20syl3an3br 1520 . . . . . . . 8 ((𝐽 ∈ 2nd𝜔 ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
2210, 13, 17, 21syl3an 1192 . . . . . . 7 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
23 unctb 9309 . . . . . . 7 (({∅} ≼ ω ∧ (𝐴 ∖ {∅}) ≼ ω) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
249, 22, 23sylancr 577 . . . . . 6 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
253, 24syl5eqbrr 4876 . . . . 5 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ≼ ω)
26 reldom 8195 . . . . . 6 Rel ≼
2726brrelexi 5355 . . . . 5 (({∅} ∪ 𝐴) ≼ ω → ({∅} ∪ 𝐴) ∈ V)
2825, 27syl 17 . . . 4 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ∈ V)
29 ssun2 3973 . . . 4 𝐴 ⊆ ({∅} ∪ 𝐴)
30 ssdomg 8235 . . . 4 (({∅} ∪ 𝐴) ∈ V → (𝐴 ⊆ ({∅} ∪ 𝐴) → 𝐴 ≼ ({∅} ∪ 𝐴)))
3128, 29, 30mpisyl 21 . . 3 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ({∅} ∪ 𝐴))
32 domtr 8242 . . 3 ((𝐴 ≼ ({∅} ∪ 𝐴) ∧ ({∅} ∪ 𝐴) ≼ ω) → 𝐴 ≼ ω)
3331, 25, 32syl2anc 575 . 2 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ω)
342, 33syl3an3b 1517 1 ((𝐽 ∈ 2nd𝜔 ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100  wal 1635  wcel 2158  ∃*wmo 2633  wral 3095  ∃*wrmo 3098  Vcvv 3390  cdif 3763  cun 3764  wss 3766  c0 4113  {csn 4367   class class class wbr 4840  ωcom 7292  cdom 8187  2nd𝜔c2ndc 21451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-inf2 8782
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-se 5268  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-isom 6107  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-2o 7794  df-oadd 7797  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-oi 8651  df-card 9045  df-cda 9272  df-topgen 16305  df-2ndc 21453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator