MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcdisj2 Structured version   Visualization version   GIF version

Theorem 2ndcdisj2 23486
Description: Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
2ndcdisj2 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem 2ndcdisj2
StepHypRef Expression
1 df-rmo 3388 . . 3 (∃*𝑥𝐴 𝑦𝑥 ↔ ∃*𝑥(𝑥𝐴𝑦𝑥))
21albii 1817 . 2 (∀𝑦∃*𝑥𝐴 𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥))
3 undif2 4500 . . . . . 6 ({∅} ∪ (𝐴 ∖ {∅})) = ({∅} ∪ 𝐴)
4 omex 9712 . . . . . . . 8 ω ∈ V
5 peano1 7927 . . . . . . . . 9 ∅ ∈ ω
6 snssi 4833 . . . . . . . . 9 (∅ ∈ ω → {∅} ⊆ ω)
75, 6ax-mp 5 . . . . . . . 8 {∅} ⊆ ω
8 ssdomg 9060 . . . . . . . 8 (ω ∈ V → ({∅} ⊆ ω → {∅} ≼ ω))
94, 7, 8mp2 9 . . . . . . 7 {∅} ≼ ω
10 id 22 . . . . . . . 8 (𝐽 ∈ 2ndω → 𝐽 ∈ 2ndω)
11 ssdif 4167 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}))
12 dfss3 3997 . . . . . . . . 9 ((𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}) ↔ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
1311, 12sylib 218 . . . . . . . 8 (𝐴𝐽 → ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
14 eldifi 4154 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ {∅}) → 𝑥𝐴)
1514anim1i 614 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥) → (𝑥𝐴𝑦𝑥))
1615moimi 2548 . . . . . . . . 9 (∃*𝑥(𝑥𝐴𝑦𝑥) → ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1716alimi 1809 . . . . . . . 8 (∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥) → ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
18 df-rmo 3388 . . . . . . . . . 10 (∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1918albii 1817 . . . . . . . . 9 (∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
20 2ndcdisj 23485 . . . . . . . . 9 ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥) → (𝐴 ∖ {∅}) ≼ ω)
2119, 20syl3an3br 1408 . . . . . . . 8 ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
2210, 13, 17, 21syl3an 1160 . . . . . . 7 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
23 unctb 10273 . . . . . . 7 (({∅} ≼ ω ∧ (𝐴 ∖ {∅}) ≼ ω) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
249, 22, 23sylancr 586 . . . . . 6 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
253, 24eqbrtrrid 5202 . . . . 5 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ≼ ω)
26 ctex 9023 . . . . 5 (({∅} ∪ 𝐴) ≼ ω → ({∅} ∪ 𝐴) ∈ V)
2725, 26syl 17 . . . 4 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ∈ V)
28 ssun2 4202 . . . 4 𝐴 ⊆ ({∅} ∪ 𝐴)
29 ssdomg 9060 . . . 4 (({∅} ∪ 𝐴) ∈ V → (𝐴 ⊆ ({∅} ∪ 𝐴) → 𝐴 ≼ ({∅} ∪ 𝐴)))
3027, 28, 29mpisyl 21 . . 3 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ({∅} ∪ 𝐴))
31 domtr 9067 . . 3 ((𝐴 ≼ ({∅} ∪ 𝐴) ∧ ({∅} ∪ 𝐴) ≼ ω) → 𝐴 ≼ ω)
3230, 25, 31syl2anc 583 . 2 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ω)
332, 32syl3an3b 1405 1 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535  wcel 2108  ∃*wmo 2541  wral 3067  ∃*wrmo 3387  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  ωcom 7903  cdom 9001  2ndωc2ndc 23467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-dju 9970  df-card 10008  df-topgen 17503  df-2ndc 23469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator