MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcdisj2 Structured version   Visualization version   GIF version

Theorem 2ndcdisj2 23372
Description: Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
2ndcdisj2 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem 2ndcdisj2
StepHypRef Expression
1 df-rmo 3346 . . 3 (∃*𝑥𝐴 𝑦𝑥 ↔ ∃*𝑥(𝑥𝐴𝑦𝑥))
21albii 1820 . 2 (∀𝑦∃*𝑥𝐴 𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥))
3 undif2 4424 . . . . . 6 ({∅} ∪ (𝐴 ∖ {∅})) = ({∅} ∪ 𝐴)
4 omex 9533 . . . . . . . 8 ω ∈ V
5 peano1 7819 . . . . . . . . 9 ∅ ∈ ω
6 snssi 4757 . . . . . . . . 9 (∅ ∈ ω → {∅} ⊆ ω)
75, 6ax-mp 5 . . . . . . . 8 {∅} ⊆ ω
8 ssdomg 8922 . . . . . . . 8 (ω ∈ V → ({∅} ⊆ ω → {∅} ≼ ω))
94, 7, 8mp2 9 . . . . . . 7 {∅} ≼ ω
10 id 22 . . . . . . . 8 (𝐽 ∈ 2ndω → 𝐽 ∈ 2ndω)
11 ssdif 4091 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}))
12 dfss3 3918 . . . . . . . . 9 ((𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}) ↔ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
1311, 12sylib 218 . . . . . . . 8 (𝐴𝐽 → ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
14 eldifi 4078 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ {∅}) → 𝑥𝐴)
1514anim1i 615 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥) → (𝑥𝐴𝑦𝑥))
1615moimi 2540 . . . . . . . . 9 (∃*𝑥(𝑥𝐴𝑦𝑥) → ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1716alimi 1812 . . . . . . . 8 (∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥) → ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
18 df-rmo 3346 . . . . . . . . . 10 (∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1918albii 1820 . . . . . . . . 9 (∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
20 2ndcdisj 23371 . . . . . . . . 9 ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥) → (𝐴 ∖ {∅}) ≼ ω)
2119, 20syl3an3br 1410 . . . . . . . 8 ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
2210, 13, 17, 21syl3an 1160 . . . . . . 7 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
23 unctb 10095 . . . . . . 7 (({∅} ≼ ω ∧ (𝐴 ∖ {∅}) ≼ ω) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
249, 22, 23sylancr 587 . . . . . 6 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
253, 24eqbrtrrid 5125 . . . . 5 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ≼ ω)
26 ctex 8886 . . . . 5 (({∅} ∪ 𝐴) ≼ ω → ({∅} ∪ 𝐴) ∈ V)
2725, 26syl 17 . . . 4 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ∈ V)
28 ssun2 4126 . . . 4 𝐴 ⊆ ({∅} ∪ 𝐴)
29 ssdomg 8922 . . . 4 (({∅} ∪ 𝐴) ∈ V → (𝐴 ⊆ ({∅} ∪ 𝐴) → 𝐴 ≼ ({∅} ∪ 𝐴)))
3027, 28, 29mpisyl 21 . . 3 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ({∅} ∪ 𝐴))
31 domtr 8929 . . 3 ((𝐴 ≼ ({∅} ∪ 𝐴) ∧ ({∅} ∪ 𝐴) ≼ ω) → 𝐴 ≼ ω)
3230, 25, 31syl2anc 584 . 2 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ω)
332, 32syl3an3b 1407 1 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539  wcel 2111  ∃*wmo 2533  wral 3047  ∃*wrmo 3345  Vcvv 3436  cdif 3894  cun 3895  wss 3897  c0 4280  {csn 4573   class class class wbr 5089  ωcom 7796  cdom 8867  2ndωc2ndc 23353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-dju 9794  df-card 9832  df-topgen 17347  df-2ndc 23355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator