MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcdisj2 Structured version   Visualization version   GIF version

Theorem 2ndcdisj2 22808
Description: Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
2ndcdisj2 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem 2ndcdisj2
StepHypRef Expression
1 df-rmo 3353 . . 3 (∃*𝑥𝐴 𝑦𝑥 ↔ ∃*𝑥(𝑥𝐴𝑦𝑥))
21albii 1821 . 2 (∀𝑦∃*𝑥𝐴 𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥))
3 undif2 4436 . . . . . 6 ({∅} ∪ (𝐴 ∖ {∅})) = ({∅} ∪ 𝐴)
4 omex 9579 . . . . . . . 8 ω ∈ V
5 peano1 7825 . . . . . . . . 9 ∅ ∈ ω
6 snssi 4768 . . . . . . . . 9 (∅ ∈ ω → {∅} ⊆ ω)
75, 6ax-mp 5 . . . . . . . 8 {∅} ⊆ ω
8 ssdomg 8940 . . . . . . . 8 (ω ∈ V → ({∅} ⊆ ω → {∅} ≼ ω))
94, 7, 8mp2 9 . . . . . . 7 {∅} ≼ ω
10 id 22 . . . . . . . 8 (𝐽 ∈ 2ndω → 𝐽 ∈ 2ndω)
11 ssdif 4099 . . . . . . . . 9 (𝐴𝐽 → (𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}))
12 dfss3 3932 . . . . . . . . 9 ((𝐴 ∖ {∅}) ⊆ (𝐽 ∖ {∅}) ↔ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
1311, 12sylib 217 . . . . . . . 8 (𝐴𝐽 → ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}))
14 eldifi 4086 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ {∅}) → 𝑥𝐴)
1514anim1i 615 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥) → (𝑥𝐴𝑦𝑥))
1615moimi 2543 . . . . . . . . 9 (∃*𝑥(𝑥𝐴𝑦𝑥) → ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1716alimi 1813 . . . . . . . 8 (∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥) → ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
18 df-rmo 3353 . . . . . . . . . 10 (∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
1918albii 1821 . . . . . . . . 9 (∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥 ↔ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥))
20 2ndcdisj 22807 . . . . . . . . 9 ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ (𝐴 ∖ {∅})𝑦𝑥) → (𝐴 ∖ {∅}) ≼ ω)
2119, 20syl3an3br 1408 . . . . . . . 8 ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ (𝐴 ∖ {∅})𝑥 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥(𝑥 ∈ (𝐴 ∖ {∅}) ∧ 𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
2210, 13, 17, 21syl3an 1160 . . . . . . 7 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → (𝐴 ∖ {∅}) ≼ ω)
23 unctb 10141 . . . . . . 7 (({∅} ≼ ω ∧ (𝐴 ∖ {∅}) ≼ ω) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
249, 22, 23sylancr 587 . . . . . 6 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ (𝐴 ∖ {∅})) ≼ ω)
253, 24eqbrtrrid 5141 . . . . 5 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ≼ ω)
26 ctex 8903 . . . . 5 (({∅} ∪ 𝐴) ≼ ω → ({∅} ∪ 𝐴) ∈ V)
2725, 26syl 17 . . . 4 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → ({∅} ∪ 𝐴) ∈ V)
28 ssun2 4133 . . . 4 𝐴 ⊆ ({∅} ∪ 𝐴)
29 ssdomg 8940 . . . 4 (({∅} ∪ 𝐴) ∈ V → (𝐴 ⊆ ({∅} ∪ 𝐴) → 𝐴 ≼ ({∅} ∪ 𝐴)))
3027, 28, 29mpisyl 21 . . 3 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ({∅} ∪ 𝐴))
31 domtr 8947 . . 3 ((𝐴 ≼ ({∅} ∪ 𝐴) ∧ ({∅} ∪ 𝐴) ≼ ω) → 𝐴 ≼ ω)
3230, 25, 31syl2anc 584 . 2 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝑥)) → 𝐴 ≼ ω)
332, 32syl3an3b 1405 1 ((𝐽 ∈ 2ndω ∧ 𝐴𝐽 ∧ ∀𝑦∃*𝑥𝐴 𝑦𝑥) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wal 1539  wcel 2106  ∃*wmo 2536  wral 3064  ∃*wrmo 3352  Vcvv 3445  cdif 3907  cun 3908  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  ωcom 7802  cdom 8881  2ndωc2ndc 22789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-oi 9446  df-dju 9837  df-card 9875  df-topgen 17325  df-2ndc 22791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator