MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absexpz Structured version   Visualization version   GIF version

Theorem absexpz 15252
Description: Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.)
Assertion
Ref Expression
absexpz ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Proof of Theorem absexpz
StepHypRef Expression
1 elznn0nn 12572 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 absexp 15251 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
32ex 414 . . . . 5 (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
43adantr 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℕ0 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
5 1cnd 11209 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 1 ∈ ℂ)
6 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
7 nnnn0 12479 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
87ad2antll 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
96, 8expcld 14111 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
10 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ≠ 0)
11 nnz 12579 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
1211ad2antll 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
136, 10, 12expne0d 14117 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ≠ 0)
14 absdiv 15242 . . . . . . . 8 ((1 ∈ ℂ ∧ (𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0) → (abs‘(1 / (𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁))))
155, 9, 13, 14syl3anc 1372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 / (𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁))))
16 abs1 15244 . . . . . . . . 9 (abs‘1) = 1
1716oveq1i 7419 . . . . . . . 8 ((abs‘1) / (abs‘(𝐴↑-𝑁))) = (1 / (abs‘(𝐴↑-𝑁)))
18 absexp 15251 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁))
196, 8, 18syl2anc 585 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁))
2019oveq2d 7425 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
2117, 20eqtrid 2785 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘1) / (abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
2215, 21eqtrd 2773 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 / (𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
23 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
2423recnd 11242 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
25 expneg2 14036 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
266, 24, 8, 25syl3anc 1372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
2726fveq2d 6896 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = (abs‘(1 / (𝐴↑-𝑁))))
28 abscl 15225 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2928ad2antrr 725 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈ ℝ)
3029recnd 11242 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈ ℂ)
31 expneg2 14036 . . . . . . 7 (((abs‘𝐴) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁)))
3230, 24, 8, 31syl3anc 1372 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁)))
3322, 27, 323eqtr4d 2783 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
3433ex 414 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
354, 34jaod 858 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
36353impia 1118 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
371, 36syl3an3b 1406 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  1c1 11111  -cneg 11445   / cdiv 11871  cn 12212  0cn0 12472  cz 12558  cexp 14027  abscabs 15181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183
This theorem is referenced by:  iseraltlem3  15630  root1cj  26264  lgseisen  26882  knoppndvlem14  35401
  Copyright terms: Public domain W3C validator