Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  absexpz Structured version   Visualization version   GIF version

Theorem absexpz 14655
 Description: Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015.)
Assertion
Ref Expression
absexpz ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Proof of Theorem absexpz
StepHypRef Expression
1 elznn0nn 11984 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 absexp 14654 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
32ex 413 . . . . 5 (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
43adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℕ0 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
5 1cnd 10625 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 1 ∈ ℂ)
6 simpll 763 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
7 nnnn0 11893 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
87ad2antll 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
96, 8expcld 13500 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
10 simplr 765 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ≠ 0)
11 nnz 11993 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
1211ad2antll 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
136, 10, 12expne0d 13506 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ≠ 0)
14 absdiv 14645 . . . . . . . 8 ((1 ∈ ℂ ∧ (𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) ≠ 0) → (abs‘(1 / (𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁))))
155, 9, 13, 14syl3anc 1365 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 / (𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁))))
16 abs1 14647 . . . . . . . . 9 (abs‘1) = 1
1716oveq1i 7158 . . . . . . . 8 ((abs‘1) / (abs‘(𝐴↑-𝑁))) = (1 / (abs‘(𝐴↑-𝑁)))
18 absexp 14654 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁))
196, 8, 18syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁))
2019oveq2d 7164 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
2117, 20syl5eq 2873 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘1) / (abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
2215, 21eqtrd 2861 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 / (𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
23 simprl 767 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
2423recnd 10658 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
25 expneg2 13428 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
266, 24, 8, 25syl3anc 1365 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
2726fveq2d 6671 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = (abs‘(1 / (𝐴↑-𝑁))))
28 abscl 14628 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2928ad2antrr 722 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈ ℝ)
3029recnd 10658 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈ ℂ)
31 expneg2 13428 . . . . . . 7 (((abs‘𝐴) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁)))
3230, 24, 8, 31syl3anc 1365 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁)))
3322, 27, 323eqtr4d 2871 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
3433ex 413 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
354, 34jaod 855 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
36353impia 1111 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
371, 36syl3an3b 1399 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∨ wo 843   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ‘cfv 6352  (class class class)co 7148  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527  -cneg 10860   / cdiv 11286  ℕcn 11627  ℕ0cn0 11886  ℤcz 11970  ↑cexp 13419  abscabs 14583 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585 This theorem is referenced by:  iseraltlem3  15030  root1cj  25250  lgseisen  25869  knoppndvlem14  33748
 Copyright terms: Public domain W3C validator