MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2g Structured version   Visualization version   GIF version

Theorem fvpr2g 7063
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by BJ, 26-Sep-2024.)
Assertion
Ref Expression
fvpr2g ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2g
StepHypRef Expression
1 prcom 4668 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
21fveq1i 6775 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵)
3 necom 2997 . . 3 (𝐴𝐵𝐵𝐴)
4 fvpr1g 7062 . . 3 ((𝐵𝑉𝐷𝑊𝐵𝐴) → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
53, 4syl3an3b 1404 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
62, 5eqtrid 2790 1 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {cpr 4563  cop 4567  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  fvpr2  7067  fpropnf1  7140  f1prex  7156  wrdlen2i  14655  fvpr1o  17271  linds2eq  31575  zlmodzxzscm  45693  zlmodzxzadd  45694  lincvalpr  45759  ldepspr  45814  2arymptfv  45996  fv2prop  46046  prelrrx2b  46060  line2ylem  46097  line2  46098  line2x  46100  line2y  46101
  Copyright terms: Public domain W3C validator