MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2g Structured version   Visualization version   GIF version

Theorem fvpr2g 7225
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by BJ, 26-Sep-2024.)
Assertion
Ref Expression
fvpr2g ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2g
StepHypRef Expression
1 prcom 4757 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
21fveq1i 6921 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵)
3 necom 3000 . . 3 (𝐴𝐵𝐵𝐴)
4 fvpr1g 7224 . . 3 ((𝐵𝑉𝐷𝑊𝐵𝐴) → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
53, 4syl3an3b 1405 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
62, 5eqtrid 2792 1 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {cpr 4650  cop 4654  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  fvpr2  7229  fpropnf1  7304  f1prex  7320  wrdlen2i  14991  fvpr1o  17620  linds2eq  33374  zlmodzxzscm  48082  zlmodzxzadd  48083  lincvalpr  48147  ldepspr  48202  2arymptfv  48384  fv2prop  48434  prelrrx2b  48448  line2ylem  48485  line2  48486  line2x  48488  line2y  48489
  Copyright terms: Public domain W3C validator