Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvpr2g | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by BJ, 26-Sep-2024.) |
Ref | Expression |
---|---|
fvpr2g | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4668 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} | |
2 | 1 | fveq1i 6775 | . 2 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉}‘𝐵) |
3 | necom 2997 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvpr1g 7062 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐵 ≠ 𝐴) → ({〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉}‘𝐵) = 𝐷) | |
5 | 3, 4 | syl3an3b 1404 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉}‘𝐵) = 𝐷) |
6 | 2, 5 | eqtrid 2790 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {cpr 4563 〈cop 4567 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: fvpr2 7067 fpropnf1 7140 f1prex 7156 wrdlen2i 14655 fvpr1o 17271 linds2eq 31575 zlmodzxzscm 45693 zlmodzxzadd 45694 lincvalpr 45759 ldepspr 45814 2arymptfv 45996 fv2prop 46046 prelrrx2b 46060 line2ylem 46097 line2 46098 line2x 46100 line2y 46101 |
Copyright terms: Public domain | W3C validator |