MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unicld Structured version   Visualization version   GIF version

Theorem unicld 22770
Description: A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
unicld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem unicld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniiun 5060 . 2 𝐴 = 𝑥𝐴 𝑥
2 dfss3 3969 . . 3 (𝐴 ⊆ (Clsd‘𝐽) ↔ ∀𝑥𝐴 𝑥 ∈ (Clsd‘𝐽))
3 clscld.1 . . . 4 𝑋 = 𝐽
43iuncld 22769 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝑥 ∈ (Clsd‘𝐽))
52, 4syl3an3b 1403 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → 𝑥𝐴 𝑥 ∈ (Clsd‘𝐽))
61, 5eqeltrid 2835 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wss 3947   cuni 4907   ciun 4996  cfv 6542  Fincfn 8941  Topctop 22615  Clsdccld 22740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-fin 8945  df-top 22616  df-cld 22743
This theorem is referenced by:  cldsubg  23835
  Copyright terms: Public domain W3C validator