MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unicld Structured version   Visualization version   GIF version

Theorem unicld 23001
Description: A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
unicld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem unicld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniiun 5038 . 2 𝐴 = 𝑥𝐴 𝑥
2 dfss3 3952 . . 3 (𝐴 ⊆ (Clsd‘𝐽) ↔ ∀𝑥𝐴 𝑥 ∈ (Clsd‘𝐽))
3 clscld.1 . . . 4 𝑋 = 𝐽
43iuncld 23000 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝑥 ∈ (Clsd‘𝐽))
52, 4syl3an3b 1406 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → 𝑥𝐴 𝑥 ∈ (Clsd‘𝐽))
61, 5eqeltrid 2837 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wss 3931   cuni 4887   ciun 4971  cfv 6541  Fincfn 8967  Topctop 22848  Clsdccld 22971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7870  df-1st 7996  df-2nd 7997  df-1o 8488  df-2o 8489  df-en 8968  df-dom 8969  df-fin 8971  df-top 22849  df-cld 22974
This theorem is referenced by:  cldsubg  24066
  Copyright terms: Public domain W3C validator