| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enpr2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 9068. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5340, ax-un 7734. (Revised by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| enpr2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2934 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
| 3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 5 | 2, 3, 4 | enpr2d 9068 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 6 | 1, 5 | syl3an3b 1407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {cpr 4608 class class class wbr 5124 2oc2o 8479 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-suc 6363 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-1o 8485 df-2o 8486 df-en 8965 |
| This theorem is referenced by: pr2ne 10023 pr2neOLD 10024 en2eqpr 10026 en2eleq 10027 pr2pwpr 14502 pmtrprfv 19439 pmtrprfv3 19440 symggen 19456 pmtr3ncomlem1 19459 pmtr3ncom 19461 mdetralt 22551 en2top 22928 hmphindis 23740 pmtrcnel 33105 pmtrcnel2 33106 fzo0pmtrlast 33108 pmtridf1o 33110 pmtrto1cl 33115 cycpm2tr 33135 cyc3evpm 33166 cyc3genpmlem 33167 cyc3conja 33173 |
| Copyright terms: Public domain | W3C validator |