![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enpr2 | Structured version Visualization version GIF version |
Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 9115. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
enpr2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) | |
4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
5 | 2, 3, 4 | enpr2d 9115 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
6 | 1, 5 | syl3an3b 1405 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {cpr 4650 class class class wbr 5166 2oc2o 8516 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-1o 8522 df-2o 8523 df-en 9004 |
This theorem is referenced by: pr2ne 10073 pr2neOLD 10074 en2eqpr 10076 en2eleq 10077 pr2pwpr 14528 pmtrprfv 19495 pmtrprfv3 19496 symggen 19512 pmtr3ncomlem1 19515 pmtr3ncom 19517 mdetralt 22635 en2top 23013 hmphindis 23826 pmtrcnel 33082 pmtrcnel2 33083 fzo0pmtrlast 33085 pmtridf1o 33087 pmtrto1cl 33092 cycpm2tr 33112 cyc3evpm 33143 cyc3genpmlem 33144 cyc3conja 33150 |
Copyright terms: Public domain | W3C validator |