MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2 Structured version   Visualization version   GIF version

Theorem enpr2 9892
Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 8970. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5303, ax-un 7668. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
enpr2 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2
StepHypRef Expression
1 df-ne 2929 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 simp1 1136 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐶)
3 simp2 1137 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐷)
4 simp3 1138 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
52, 3, 4enpr2d 8970 . 2 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o)
61, 5syl3an3b 1407 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {cpr 4578   class class class wbr 5091  2oc2o 8379  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-suc 6312  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-1o 8385  df-2o 8386  df-en 8870
This theorem is referenced by:  pr2ne  9893  en2eqpr  9895  en2eleq  9896  pr2pwpr  14383  pmtrprfv  19363  pmtrprfv3  19364  symggen  19380  pmtr3ncomlem1  19383  pmtr3ncom  19385  mdetralt  22521  en2top  22898  hmphindis  23710  pmtrcnel  33053  pmtrcnel2  33054  fzo0pmtrlast  33056  pmtridf1o  33058  pmtrto1cl  33063  cycpm2tr  33083  cyc3evpm  33114  cyc3genpmlem  33115  cyc3conja  33121
  Copyright terms: Public domain W3C validator