Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enpr2 | Structured version Visualization version GIF version |
Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 8874. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5297, ax-un 7620. (Revised by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
enpr2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2942 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) | |
4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
5 | 2, 3, 4 | enpr2d 8874 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
6 | 1, 5 | syl3an3b 1405 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 {cpr 4567 class class class wbr 5081 2oc2o 8322 ≈ cen 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-suc 6287 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-1o 8328 df-2o 8329 df-en 8765 |
This theorem is referenced by: pr2ne 9806 pr2neOLD 9807 en2eqpr 9809 en2eleq 9810 pr2pwpr 14238 pmtrprfv 19106 pmtrprfv3 19107 symggen 19123 pmtr3ncomlem1 19126 pmtr3ncom 19128 mdetralt 21802 en2top 22180 hmphindis 22993 pmtrcnel 31403 pmtrcnel2 31404 pmtridf1o 31406 pmtrto1cl 31411 cycpm2tr 31431 cyc3evpm 31462 cyc3genpmlem 31463 cyc3conja 31469 |
Copyright terms: Public domain | W3C validator |