MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2 Structured version   Visualization version   GIF version

Theorem enpr2 9917
Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 8981. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5307, ax-un 7675. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
enpr2 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2
StepHypRef Expression
1 df-ne 2926 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 simp1 1136 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐶)
3 simp2 1137 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐷)
4 simp3 1138 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
52, 3, 4enpr2d 8981 . 2 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o)
61, 5syl3an3b 1407 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {cpr 4581   class class class wbr 5095  2oc2o 8389  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-suc 6317  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-1o 8395  df-2o 8396  df-en 8880
This theorem is referenced by:  pr2ne  9918  en2eqpr  9920  en2eleq  9921  pr2pwpr  14404  pmtrprfv  19350  pmtrprfv3  19351  symggen  19367  pmtr3ncomlem1  19370  pmtr3ncom  19372  mdetralt  22511  en2top  22888  hmphindis  23700  pmtrcnel  33044  pmtrcnel2  33045  fzo0pmtrlast  33047  pmtridf1o  33049  pmtrto1cl  33054  cycpm2tr  33074  cyc3evpm  33105  cyc3genpmlem  33106  cyc3conja  33112
  Copyright terms: Public domain W3C validator