MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2 Structured version   Visualization version   GIF version

Theorem enpr2 10071
Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 9115. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
enpr2 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2
StepHypRef Expression
1 df-ne 2947 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 simp1 1136 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐶)
3 simp2 1137 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐷)
4 simp3 1138 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
52, 3, 4enpr2d 9115 . 2 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o)
61, 5syl3an3b 1405 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {cpr 4650   class class class wbr 5166  2oc2o 8516  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-1o 8522  df-2o 8523  df-en 9004
This theorem is referenced by:  pr2ne  10073  pr2neOLD  10074  en2eqpr  10076  en2eleq  10077  pr2pwpr  14528  pmtrprfv  19495  pmtrprfv3  19496  symggen  19512  pmtr3ncomlem1  19515  pmtr3ncom  19517  mdetralt  22635  en2top  23013  hmphindis  23826  pmtrcnel  33082  pmtrcnel2  33083  fzo0pmtrlast  33085  pmtridf1o  33087  pmtrto1cl  33092  cycpm2tr  33112  cyc3evpm  33143  cyc3genpmlem  33144  cyc3conja  33150
  Copyright terms: Public domain W3C validator