| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enpr2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 8977. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5305, ax-un 7674. (Revised by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| enpr2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
| 3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 5 | 2, 3, 4 | enpr2d 8977 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 6 | 1, 5 | syl3an3b 1407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {cpr 4577 class class class wbr 5093 2oc2o 8385 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-suc 6317 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-1o 8391 df-2o 8392 df-en 8876 |
| This theorem is referenced by: pr2ne 9903 en2eqpr 9905 en2eleq 9906 pr2pwpr 14388 pmtrprfv 19367 pmtrprfv3 19368 symggen 19384 pmtr3ncomlem1 19387 pmtr3ncom 19389 mdetralt 22524 en2top 22901 hmphindis 23713 pmtrcnel 33065 pmtrcnel2 33066 fzo0pmtrlast 33068 pmtridf1o 33070 pmtrto1cl 33075 cycpm2tr 33095 cyc3evpm 33126 cyc3genpmlem 33127 cyc3conja 33133 |
| Copyright terms: Public domain | W3C validator |