| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enpr2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 8970. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5303, ax-un 7668. (Revised by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| enpr2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
| 3 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 5 | 2, 3, 4 | enpr2d 8970 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 6 | 1, 5 | syl3an3b 1407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {cpr 4578 class class class wbr 5091 2oc2o 8379 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-suc 6312 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-1o 8385 df-2o 8386 df-en 8870 |
| This theorem is referenced by: pr2ne 9893 en2eqpr 9895 en2eleq 9896 pr2pwpr 14383 pmtrprfv 19363 pmtrprfv3 19364 symggen 19380 pmtr3ncomlem1 19383 pmtr3ncom 19385 mdetralt 22521 en2top 22898 hmphindis 23710 pmtrcnel 33053 pmtrcnel2 33054 fzo0pmtrlast 33056 pmtridf1o 33058 pmtrto1cl 33063 cycpm2tr 33083 cyc3evpm 33114 cyc3genpmlem 33115 cyc3conja 33121 |
| Copyright terms: Public domain | W3C validator |