Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enpr2 | Structured version Visualization version GIF version |
Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 8892. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5302, ax-un 7629. (Revised by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
enpr2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
3 | simp2 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) | |
4 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
5 | 2, 3, 4 | enpr2d 8892 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o) |
6 | 1, 5 | syl3an3b 1404 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {cpr 4572 class class class wbr 5086 2oc2o 8339 ≈ cen 8779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-suc 6294 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-1o 8345 df-2o 8346 df-en 8783 |
This theorem is referenced by: pr2ne 9839 pr2neOLD 9840 en2eqpr 9842 en2eleq 9843 pr2pwpr 14271 pmtrprfv 19134 pmtrprfv3 19135 symggen 19151 pmtr3ncomlem1 19154 pmtr3ncom 19156 mdetralt 21837 en2top 22215 hmphindis 23028 pmtrcnel 31489 pmtrcnel2 31490 pmtridf1o 31492 pmtrto1cl 31497 cycpm2tr 31517 cyc3evpm 31548 cyc3genpmlem 31549 cyc3conja 31555 |
Copyright terms: Public domain | W3C validator |