MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2 Structured version   Visualization version   GIF version

Theorem enpr2 10027
Description: An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 9074. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5365, ax-un 7741. (Revised by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
enpr2 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2
StepHypRef Expression
1 df-ne 2930 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 simp1 1133 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐶)
3 simp2 1134 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐷)
4 simp3 1135 . . 3 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
52, 3, 4enpr2d 9074 . 2 ((𝐴𝐶𝐵𝐷 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 2o)
61, 5syl3an3b 1402 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1533  wcel 2098  wne 2929  {cpr 4632   class class class wbr 5149  2oc2o 8481  cen 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-suc 6377  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-1o 8487  df-2o 8488  df-en 8965
This theorem is referenced by:  pr2ne  10029  pr2neOLD  10030  en2eqpr  10032  en2eleq  10033  pr2pwpr  14476  pmtrprfv  19420  pmtrprfv3  19421  symggen  19437  pmtr3ncomlem1  19440  pmtr3ncom  19442  mdetralt  22554  en2top  22932  hmphindis  23745  pmtrcnel  32902  pmtrcnel2  32903  fzo0pmtrlast  32905  pmtridf1o  32907  pmtrto1cl  32912  cycpm2tr  32932  cyc3evpm  32963  cyc3genpmlem  32964  cyc3conja  32970
  Copyright terms: Public domain W3C validator