MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2 Structured version   Visualization version   GIF version

Theorem fvun2 6990
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))

Proof of Theorem fvun2
StepHypRef Expression
1 uncom 4152 . . 3 (𝐹𝐺) = (𝐺𝐹)
21fveq1i 6898 . 2 ((𝐹𝐺)‘𝑋) = ((𝐺𝐹)‘𝑋)
3 incom 4201 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
43eqeq1i 2733 . . . . 5 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
54anbi1i 623 . . . 4 (((𝐴𝐵) = ∅ ∧ 𝑋𝐵) ↔ ((𝐵𝐴) = ∅ ∧ 𝑋𝐵))
6 fvun1 6989 . . . 4 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ ((𝐵𝐴) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
75, 6syl3an3b 1403 . . 3 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
873com12 1121 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
92, 8eqtrid 2780 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  cun 3945  cin 3946  c0 4323   Fn wfn 6543  cfv 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556
This theorem is referenced by:  fvun2d  6992  fveqf1o  7312  frrlem12  8303  ptunhmeo  23725  noextenddif  27614  noextendlt  27615  noextendgt  27616  noetasuplem4  27682  axlowdimlem9  28774  axlowdimlem12  28777  axlowdimlem17  28782  vtxdun  29308  isoun  32494  resf1o  32525  cycpmfvlem  32846  elrspunidl  33157  lbsdiflsp0  33324  sseqfv2  34014  actfunsnrndisj  34237  reprsuc  34247  breprexplema  34262  cvmliftlem4  34898  fullfunfv  35543  finixpnum  37078  poimirlem1  37094  poimirlem2  37095  poimirlem3  37096  poimirlem4  37097  poimirlem6  37099  poimirlem7  37100  poimirlem11  37104  poimirlem12  37105  poimirlem16  37109  poimirlem19  37112  poimirlem20  37113  poimirlem23  37116  poimirlem28  37121
  Copyright terms: Public domain W3C validator