![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvun2 | Structured version Visualization version GIF version |
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
fvun2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4153 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
2 | 1 | fveq1i 6892 | . 2 ⊢ ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐺 ∪ 𝐹)‘𝑋) |
3 | incom 4201 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
4 | 3 | eqeq1i 2737 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
5 | 4 | anbi1i 624 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵) ↔ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) |
6 | fvun1 6982 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) | |
7 | 5, 6 | syl3an3b 1405 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
8 | 7 | 3com12 1123 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
9 | 2, 8 | eqtrid 2784 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: fvun2d 6985 fveqf1o 7303 frrlem12 8284 ptunhmeo 23319 noextenddif 27178 noextendlt 27179 noextendgt 27180 noetasuplem4 27246 axlowdimlem9 28246 axlowdimlem12 28249 axlowdimlem17 28254 vtxdun 28776 isoun 31961 resf1o 31993 cycpmfvlem 32312 elrspunidl 32591 lbsdiflsp0 32770 sseqfv2 33462 actfunsnrndisj 33686 reprsuc 33696 breprexplema 33711 cvmliftlem4 34348 fullfunfv 34994 finixpnum 36565 poimirlem1 36581 poimirlem2 36582 poimirlem3 36583 poimirlem4 36584 poimirlem6 36586 poimirlem7 36587 poimirlem11 36591 poimirlem12 36592 poimirlem16 36596 poimirlem19 36599 poimirlem20 36600 poimirlem23 36603 poimirlem28 36608 |
Copyright terms: Public domain | W3C validator |