| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvun2 | Structured version Visualization version GIF version | ||
| Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| fvun2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4133 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
| 2 | 1 | fveq1i 6877 | . 2 ⊢ ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐺 ∪ 𝐹)‘𝑋) |
| 3 | incom 4184 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 4 | 3 | eqeq1i 2740 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
| 5 | 4 | anbi1i 624 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵) ↔ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) |
| 6 | fvun1 6970 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) | |
| 7 | 5, 6 | syl3an3b 1407 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
| 8 | 7 | 3com12 1123 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
| 9 | 2, 8 | eqtrid 2782 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: fvun2d 6973 fveqf1o 7295 frrlem12 8296 ptunhmeo 23746 noextenddif 27632 noextendlt 27633 noextendgt 27634 noetasuplem4 27700 axlowdimlem9 28929 axlowdimlem12 28932 axlowdimlem17 28937 vtxdun 29461 isoun 32679 resf1o 32707 cycpmfvlem 33123 elrspunidl 33443 lbsdiflsp0 33666 sseqfv2 34426 actfunsnrndisj 34637 reprsuc 34647 breprexplema 34662 cvmliftlem4 35310 fullfunfv 35965 finixpnum 37629 poimirlem1 37645 poimirlem2 37646 poimirlem3 37647 poimirlem4 37648 poimirlem6 37650 poimirlem7 37651 poimirlem11 37655 poimirlem12 37656 poimirlem16 37660 poimirlem19 37663 poimirlem20 37664 poimirlem23 37667 poimirlem28 37672 |
| Copyright terms: Public domain | W3C validator |