MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2 Structured version   Visualization version   GIF version

Theorem fvun2 6956
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))

Proof of Theorem fvun2
StepHypRef Expression
1 uncom 4124 . . 3 (𝐹𝐺) = (𝐺𝐹)
21fveq1i 6862 . 2 ((𝐹𝐺)‘𝑋) = ((𝐺𝐹)‘𝑋)
3 incom 4175 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
43eqeq1i 2735 . . . . 5 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
54anbi1i 624 . . . 4 (((𝐴𝐵) = ∅ ∧ 𝑋𝐵) ↔ ((𝐵𝐴) = ∅ ∧ 𝑋𝐵))
6 fvun1 6955 . . . 4 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ ((𝐵𝐴) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
75, 6syl3an3b 1407 . . 3 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
873com12 1123 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
92, 8eqtrid 2777 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3915  cin 3916  c0 4299   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  fvun2d  6958  fveqf1o  7280  frrlem12  8279  ptunhmeo  23702  noextenddif  27587  noextendlt  27588  noextendgt  27589  noetasuplem4  27655  axlowdimlem9  28884  axlowdimlem12  28887  axlowdimlem17  28892  vtxdun  29416  isoun  32632  resf1o  32660  cycpmfvlem  33076  elrspunidl  33406  lbsdiflsp0  33629  sseqfv2  34392  actfunsnrndisj  34603  reprsuc  34613  breprexplema  34628  cvmliftlem4  35282  fullfunfv  35942  finixpnum  37606  poimirlem1  37622  poimirlem2  37623  poimirlem3  37624  poimirlem4  37625  poimirlem6  37627  poimirlem7  37628  poimirlem11  37632  poimirlem12  37633  poimirlem16  37637  poimirlem19  37640  poimirlem20  37641  poimirlem23  37644  poimirlem28  37649
  Copyright terms: Public domain W3C validator