Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvun2 | Structured version Visualization version GIF version |
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
fvun2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4087 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
2 | 1 | fveq1i 6775 | . 2 ⊢ ((𝐹 ∪ 𝐺)‘𝑋) = ((𝐺 ∪ 𝐹)‘𝑋) |
3 | incom 4135 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
4 | 3 | eqeq1i 2743 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
5 | 4 | anbi1i 624 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵) ↔ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) |
6 | fvun1 6859 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐵 ∩ 𝐴) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) | |
7 | 5, 6 | syl3an3b 1404 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
8 | 7 | 3com12 1122 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐺 ∪ 𝐹)‘𝑋) = (𝐺‘𝑋)) |
9 | 2, 8 | eqtrid 2790 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ((𝐴 ∩ 𝐵) = ∅ ∧ 𝑋 ∈ 𝐵)) → ((𝐹 ∪ 𝐺)‘𝑋) = (𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: fvun2d 6862 fveqf1o 7175 frrlem12 8113 ptunhmeo 22959 axlowdimlem9 27318 axlowdimlem12 27321 axlowdimlem17 27326 vtxdun 27848 isoun 31034 resf1o 31065 cycpmfvlem 31379 elrspunidl 31606 lbsdiflsp0 31707 sseqfv2 32361 actfunsnrndisj 32585 reprsuc 32595 breprexplema 32610 cvmliftlem4 33250 noextenddif 33871 noextendlt 33872 noextendgt 33873 noetasuplem4 33939 fullfunfv 34249 finixpnum 35762 poimirlem1 35778 poimirlem2 35779 poimirlem3 35780 poimirlem4 35781 poimirlem6 35783 poimirlem7 35784 poimirlem11 35788 poimirlem12 35789 poimirlem16 35793 poimirlem19 35796 poimirlem20 35797 poimirlem23 35800 poimirlem28 35805 |
Copyright terms: Public domain | W3C validator |