MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2 Structured version   Visualization version   GIF version

Theorem fvun2 6772
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))

Proof of Theorem fvun2
StepHypRef Expression
1 uncom 4053 . . 3 (𝐹𝐺) = (𝐺𝐹)
21fveq1i 6687 . 2 ((𝐹𝐺)‘𝑋) = ((𝐺𝐹)‘𝑋)
3 incom 4101 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
43eqeq1i 2744 . . . . 5 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
54anbi1i 627 . . . 4 (((𝐴𝐵) = ∅ ∧ 𝑋𝐵) ↔ ((𝐵𝐴) = ∅ ∧ 𝑋𝐵))
6 fvun1 6771 . . . 4 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ ((𝐵𝐴) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
75, 6syl3an3b 1406 . . 3 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
873com12 1124 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐺𝐹)‘𝑋) = (𝐺𝑋))
92, 8syl5eq 2786 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  cun 3851  cin 3852  c0 4221   Fn wfn 6344  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-fv 6357
This theorem is referenced by:  fvun2d  6774  fveqf1o  7082  ptunhmeo  22571  axlowdimlem9  26908  axlowdimlem12  26911  axlowdimlem17  26916  vtxdun  27435  isoun  30621  resf1o  30652  cycpmfvlem  30968  elrspunidl  31190  lbsdiflsp0  31291  sseqfv2  31943  actfunsnrndisj  32167  reprsuc  32177  breprexplema  32192  cvmliftlem4  32833  frrlem12  33466  noextenddif  33526  noextendlt  33527  noextendgt  33528  noetasuplem4  33594  fullfunfv  33904  finixpnum  35417  poimirlem1  35433  poimirlem2  35434  poimirlem3  35435  poimirlem4  35436  poimirlem6  35438  poimirlem7  35439  poimirlem11  35443  poimirlem12  35444  poimirlem16  35448  poimirlem19  35451  poimirlem20  35452  poimirlem23  35455  poimirlem28  35460
  Copyright terms: Public domain W3C validator