MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccdil Structured version   Visualization version   GIF version

Theorem iccdil 13458
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdil.1 (𝐴 · 𝑅) = 𝐶
iccdil.2 (𝐵 · 𝑅) = 𝐷
Assertion
Ref Expression
iccdil (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccdil
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rpre 12967 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
3 remulcl 11160 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 · 𝑅) ∈ ℝ)
42, 3sylan2 593 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 · 𝑅) ∈ ℝ)
51, 42thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
65adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
7 elrp 12960 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
8 lemul1 12041 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
97, 8syl3an3b 1407 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1093expb 1120 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1110adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
12 iccdil.1 . . . . 5 (𝐴 · 𝑅) = 𝐶
1312breq1i 5117 . . . 4 ((𝐴 · 𝑅) ≤ (𝑋 · 𝑅) ↔ 𝐶 ≤ (𝑋 · 𝑅))
1411, 13bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 · 𝑅)))
15 lemul1 12041 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
167, 15syl3an3b 1407 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
17163expb 1120 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1817an12s 649 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1918adantll 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
20 iccdil.2 . . . . 5 (𝐵 · 𝑅) = 𝐷
2120breq2i 5118 . . . 4 ((𝑋 · 𝑅) ≤ (𝐵 · 𝑅) ↔ (𝑋 · 𝑅) ≤ 𝐷)
2219, 21bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ 𝐷))
236, 14, 223anbi123d 1438 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
24 elicc2 13379 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2524adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
26 remulcl 11160 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 · 𝑅) ∈ ℝ)
2712, 26eqeltrrid 2834 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
28 remulcl 11160 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 · 𝑅) ∈ ℝ)
2920, 28eqeltrrid 2834 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
30 elicc2 13379 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3127, 29, 30syl2an 596 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3231anandirs 679 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
332, 32sylan2 593 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3433adantrl 716 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3523, 25, 343bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216  +crp 12958  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-rp 12959  df-icc 13320
This theorem is referenced by:  iccdili  13459  lincmb01cmp  13463  iccf1o  13464
  Copyright terms: Public domain W3C validator