MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccdil Structured version   Visualization version   GIF version

Theorem iccdil 13392
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdil.1 (𝐴 · 𝑅) = 𝐶
iccdil.2 (𝐵 · 𝑅) = 𝐷
Assertion
Ref Expression
iccdil (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccdil
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rpre 12901 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
3 remulcl 11098 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 · 𝑅) ∈ ℝ)
42, 3sylan2 593 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 · 𝑅) ∈ ℝ)
51, 42thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
65adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
7 elrp 12894 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
8 lemul1 11980 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
97, 8syl3an3b 1407 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1093expb 1120 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1110adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
12 iccdil.1 . . . . 5 (𝐴 · 𝑅) = 𝐶
1312breq1i 5100 . . . 4 ((𝐴 · 𝑅) ≤ (𝑋 · 𝑅) ↔ 𝐶 ≤ (𝑋 · 𝑅))
1411, 13bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 · 𝑅)))
15 lemul1 11980 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
167, 15syl3an3b 1407 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
17163expb 1120 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1817an12s 649 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1918adantll 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
20 iccdil.2 . . . . 5 (𝐵 · 𝑅) = 𝐷
2120breq2i 5101 . . . 4 ((𝑋 · 𝑅) ≤ (𝐵 · 𝑅) ↔ (𝑋 · 𝑅) ≤ 𝐷)
2219, 21bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ 𝐷))
236, 14, 223anbi123d 1438 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
24 elicc2 13313 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2524adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
26 remulcl 11098 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 · 𝑅) ∈ ℝ)
2712, 26eqeltrrid 2838 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
28 remulcl 11098 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 · 𝑅) ∈ ℝ)
2920, 28eqeltrrid 2838 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
30 elicc2 13313 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3127, 29, 30syl2an 596 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3231anandirs 679 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
332, 32sylan2 593 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3433adantrl 716 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3523, 25, 343bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  (class class class)co 7352  cr 11012  0cc0 11013   · cmul 11018   < clt 11153  cle 11154  +crp 12892  [,]cicc 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-rp 12893  df-icc 13254
This theorem is referenced by:  iccdili  13393  lincmb01cmp  13397  iccf1o  13398
  Copyright terms: Public domain W3C validator