MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccdil Structured version   Visualization version   GIF version

Theorem iccdil 13411
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdil.1 (𝐴 · 𝑅) = 𝐶
iccdil.2 (𝐵 · 𝑅) = 𝐷
Assertion
Ref Expression
iccdil (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccdil
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → 𝑋 ∈ ℝ)
2 rpre 12920 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
3 remulcl 11113 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 · 𝑅) ∈ ℝ)
42, 3sylan2 593 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 · 𝑅) ∈ ℝ)
51, 42thd 265 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
65adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ ℝ ↔ (𝑋 · 𝑅) ∈ ℝ))
7 elrp 12913 . . . . . . 7 (𝑅 ∈ ℝ+ ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅))
8 lemul1 11994 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
97, 8syl3an3b 1407 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1093expb 1120 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
1110adantlr 715 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋 ↔ (𝐴 · 𝑅) ≤ (𝑋 · 𝑅)))
12 iccdil.1 . . . . 5 (𝐴 · 𝑅) = 𝐶
1312breq1i 5102 . . . 4 ((𝐴 · 𝑅) ≤ (𝑋 · 𝑅) ↔ 𝐶 ≤ (𝑋 · 𝑅))
1411, 13bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝐴𝑋𝐶 ≤ (𝑋 · 𝑅)))
15 lemul1 11994 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑅 ∈ ℝ ∧ 0 < 𝑅)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
167, 15syl3an3b 1407 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
17163expb 1120 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1817an12s 649 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
1918adantll 714 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ (𝐵 · 𝑅)))
20 iccdil.2 . . . . 5 (𝐵 · 𝑅) = 𝐷
2120breq2i 5103 . . . 4 ((𝑋 · 𝑅) ≤ (𝐵 · 𝑅) ↔ (𝑋 · 𝑅) ≤ 𝐷)
2219, 21bitrdi 287 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋𝐵 ↔ (𝑋 · 𝑅) ≤ 𝐷))
236, 14, 223anbi123d 1438 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
24 elicc2 13332 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2524adantr 480 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
26 remulcl 11113 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴 · 𝑅) ∈ ℝ)
2712, 26eqeltrrid 2833 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
28 remulcl 11113 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵 · 𝑅) ∈ ℝ)
2920, 28eqeltrrid 2833 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
30 elicc2 13332 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3127, 29, 30syl2an 596 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3231anandirs 679 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
332, 32sylan2 593 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ+) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3433adantrl 716 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → ((𝑋 · 𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋 · 𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋 · 𝑅) ∧ (𝑋 · 𝑅) ≤ 𝐷)))
3523, 25, 343bitr4d 311 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028   · cmul 11033   < clt 11168  cle 11169  +crp 12911  [,]cicc 13269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-rp 12912  df-icc 13273
This theorem is referenced by:  iccdili  13412  lincmb01cmp  13416  iccf1o  13417
  Copyright terms: Public domain W3C validator