Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > posglbdg | Structured version Visualization version GIF version |
Description: Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
posglbdg.l | ⊢ ≤ = (le‘𝐾) |
posglbdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
posglbdg.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
posglbdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
posglbdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
posglbdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
posglbdg.lb | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) |
posglbdg.gt | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) |
Ref | Expression |
---|---|
posglbdg | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
2 | posglbdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | oduleval 17923 | . 2 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
4 | posglbdg.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
5 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 1, 5 | odubas 17925 | . . 3 ⊢ (Base‘𝐾) = (Base‘(ODual‘𝐾)) |
7 | 4, 6 | eqtrdi 2795 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘(ODual‘𝐾))) |
8 | posglbdg.g | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) | |
9 | posglbdg.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
10 | eqid 2738 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
11 | 1, 10 | odulub 18040 | . . . 4 ⊢ (𝐾 ∈ Poset → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
13 | 8, 12 | eqtrd 2778 | . 2 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
14 | 1 | odupos 17961 | . . 3 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
16 | posglbdg.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
17 | posglbdg.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
18 | posglbdg.lb | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) | |
19 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
20 | brcnvg 5777 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑇 ∈ 𝐵) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) | |
21 | 19, 17, 20 | sylancr 586 | . . . 4 ⊢ (𝜑 → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
23 | 18, 22 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥◡ ≤ 𝑇) |
24 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
25 | 19, 24 | brcnv 5780 | . . . . 5 ⊢ (𝑥◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥) |
26 | 25 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦 ↔ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | posglbdg.gt | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) | |
28 | 26, 27 | syl3an3b 1403 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑦 ≤ 𝑇) |
29 | brcnvg 5777 | . . . . 5 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) | |
30 | 17, 24, 29 | sylancl 585 | . . . 4 ⊢ (𝜑 → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
31 | 30 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
32 | 28, 31 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑇◡ ≤ 𝑦) |
33 | 3, 7, 13, 15, 16, 17, 23, 32 | poslubdg 18047 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ◡ccnv 5579 ‘cfv 6418 Basecbs 16840 lecple 16895 ODualcodu 17920 Posetcpo 17940 lubclub 17942 glbcglb 17943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-odu 17921 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 |
This theorem is referenced by: mrelatglb 18193 mrelatglb0 18194 glbsscl 46143 ipoglb 46165 |
Copyright terms: Public domain | W3C validator |