Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > posglbdg | Structured version Visualization version GIF version |
Description: Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
posglbdg.l | ⊢ ≤ = (le‘𝐾) |
posglbdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
posglbdg.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
posglbdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
posglbdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
posglbdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
posglbdg.lb | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) |
posglbdg.gt | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) |
Ref | Expression |
---|---|
posglbdg | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
2 | posglbdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | oduleval 18007 | . 2 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
4 | posglbdg.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
5 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 1, 5 | odubas 18009 | . . 3 ⊢ (Base‘𝐾) = (Base‘(ODual‘𝐾)) |
7 | 4, 6 | eqtrdi 2794 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘(ODual‘𝐾))) |
8 | posglbdg.g | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) | |
9 | posglbdg.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
10 | eqid 2738 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
11 | 1, 10 | odulub 18125 | . . . 4 ⊢ (𝐾 ∈ Poset → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
13 | 8, 12 | eqtrd 2778 | . 2 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
14 | 1 | odupos 18046 | . . 3 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
16 | posglbdg.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
17 | posglbdg.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
18 | posglbdg.lb | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) | |
19 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
20 | brcnvg 5788 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑇 ∈ 𝐵) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) | |
21 | 19, 17, 20 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
22 | 21 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
23 | 18, 22 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥◡ ≤ 𝑇) |
24 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
25 | 19, 24 | brcnv 5791 | . . . . 5 ⊢ (𝑥◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥) |
26 | 25 | ralbii 3092 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦 ↔ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | posglbdg.gt | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) | |
28 | 26, 27 | syl3an3b 1404 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑦 ≤ 𝑇) |
29 | brcnvg 5788 | . . . . 5 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) | |
30 | 17, 24, 29 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
31 | 30 | 3ad2ant1 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
32 | 28, 31 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑇◡ ≤ 𝑦) |
33 | 3, 7, 13, 15, 16, 17, 23, 32 | poslubdg 18132 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ◡ccnv 5588 ‘cfv 6433 Basecbs 16912 lecple 16969 ODualcodu 18004 Posetcpo 18025 lubclub 18027 glbcglb 18028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12438 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ple 16982 df-odu 18005 df-proset 18013 df-poset 18031 df-lub 18064 df-glb 18065 |
This theorem is referenced by: mrelatglb 18278 mrelatglb0 18279 glbsscl 46255 ipoglb 46277 |
Copyright terms: Public domain | W3C validator |