| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posglbdg | Structured version Visualization version GIF version | ||
| Description: Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| posglbdg.l | ⊢ ≤ = (le‘𝐾) |
| posglbdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| posglbdg.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
| posglbdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| posglbdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| posglbdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| posglbdg.lb | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) |
| posglbdg.gt | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) |
| Ref | Expression |
|---|---|
| posglbdg | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
| 2 | posglbdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | oduleval 18213 | . 2 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
| 4 | posglbdg.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | 1, 5 | odubas 18215 | . . 3 ⊢ (Base‘𝐾) = (Base‘(ODual‘𝐾)) |
| 7 | 4, 6 | eqtrdi 2780 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘(ODual‘𝐾))) |
| 8 | posglbdg.g | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) | |
| 9 | posglbdg.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 11 | 1, 10 | odulub 18329 | . . . 4 ⊢ (𝐾 ∈ Poset → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
| 13 | 8, 12 | eqtrd 2764 | . 2 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
| 14 | 1 | odupos 18250 | . . 3 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
| 15 | 9, 14 | syl 17 | . 2 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
| 16 | posglbdg.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 17 | posglbdg.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
| 18 | posglbdg.lb | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) | |
| 19 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 20 | brcnvg 5826 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑇 ∈ 𝐵) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) | |
| 21 | 19, 17, 20 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
| 23 | 18, 22 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥◡ ≤ 𝑇) |
| 24 | vex 3442 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 25 | 19, 24 | brcnv 5829 | . . . . 5 ⊢ (𝑥◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥) |
| 26 | 25 | ralbii 3075 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦 ↔ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) |
| 27 | posglbdg.gt | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) | |
| 28 | 26, 27 | syl3an3b 1407 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑦 ≤ 𝑇) |
| 29 | brcnvg 5826 | . . . . 5 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) | |
| 30 | 17, 24, 29 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
| 31 | 30 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
| 32 | 28, 31 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑇◡ ≤ 𝑦) |
| 33 | 3, 7, 13, 15, 16, 17, 23, 32 | poslubdg 18336 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 ◡ccnv 5622 ‘cfv 6486 Basecbs 17138 lecple 17186 ODualcodu 18210 Posetcpo 18231 lubclub 18233 glbcglb 18234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-dec 12610 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ple 17199 df-odu 18211 df-proset 18218 df-poset 18237 df-lub 18268 df-glb 18269 |
| This theorem is referenced by: mrelatglb 18484 mrelatglb0 18485 glbsscl 48949 ipoglb 48979 |
| Copyright terms: Public domain | W3C validator |