![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > posglbdg | Structured version Visualization version GIF version |
Description: Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
posglbdg.l | ⊢ ≤ = (le‘𝐾) |
posglbdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
posglbdg.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
posglbdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
posglbdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
posglbdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
posglbdg.lb | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) |
posglbdg.gt | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) |
Ref | Expression |
---|---|
posglbdg | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
2 | posglbdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | oduleval 18359 | . 2 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
4 | posglbdg.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
5 | eqid 2740 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 1, 5 | odubas 18361 | . . 3 ⊢ (Base‘𝐾) = (Base‘(ODual‘𝐾)) |
7 | 4, 6 | eqtrdi 2796 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘(ODual‘𝐾))) |
8 | posglbdg.g | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) | |
9 | posglbdg.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
10 | eqid 2740 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
11 | 1, 10 | odulub 18477 | . . . 4 ⊢ (𝐾 ∈ Poset → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
13 | 8, 12 | eqtrd 2780 | . 2 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
14 | 1 | odupos 18398 | . . 3 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
16 | posglbdg.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
17 | posglbdg.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
18 | posglbdg.lb | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) | |
19 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
20 | brcnvg 5904 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑇 ∈ 𝐵) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) | |
21 | 19, 17, 20 | sylancr 586 | . . . 4 ⊢ (𝜑 → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
23 | 18, 22 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥◡ ≤ 𝑇) |
24 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
25 | 19, 24 | brcnv 5907 | . . . . 5 ⊢ (𝑥◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥) |
26 | 25 | ralbii 3099 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦 ↔ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | posglbdg.gt | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) | |
28 | 26, 27 | syl3an3b 1405 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑦 ≤ 𝑇) |
29 | brcnvg 5904 | . . . . 5 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) | |
30 | 17, 24, 29 | sylancl 585 | . . . 4 ⊢ (𝜑 → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
31 | 30 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
32 | 28, 31 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑇◡ ≤ 𝑦) |
33 | 3, 7, 13, 15, 16, 17, 23, 32 | poslubdg 18484 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ◡ccnv 5699 ‘cfv 6573 Basecbs 17258 lecple 17318 ODualcodu 18356 Posetcpo 18377 lubclub 18379 glbcglb 18380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ple 17331 df-odu 18357 df-proset 18365 df-poset 18383 df-lub 18416 df-glb 18417 |
This theorem is referenced by: mrelatglb 18630 mrelatglb0 18631 glbsscl 48641 ipoglb 48663 |
Copyright terms: Public domain | W3C validator |