MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres1 Structured version   Visualization version   GIF version

Theorem fresaunres1 6544
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.)
Assertion
Ref Expression
fresaunres1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)

Proof of Theorem fresaunres1
StepHypRef Expression
1 uncom 4126 . . 3 (𝐹𝐺) = (𝐺𝐹)
21reseq1i 5842 . 2 ((𝐹𝐺) ↾ 𝐴) = ((𝐺𝐹) ↾ 𝐴)
3 incom 4175 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
43reseq2i 5843 . . . . 5 (𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐵𝐴))
53reseq2i 5843 . . . . 5 (𝐺 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐵𝐴))
64, 5eqeq12i 2833 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐵𝐴)) = (𝐺 ↾ (𝐵𝐴)))
7 eqcom 2825 . . . 4 ((𝐹 ↾ (𝐵𝐴)) = (𝐺 ↾ (𝐵𝐴)) ↔ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴)))
86, 7bitri 276 . . 3 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) ↔ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴)))
9 fresaunres2 6543 . . . 4 ((𝐺:𝐵𝐶𝐹:𝐴𝐶 ∧ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴))) → ((𝐺𝐹) ↾ 𝐴) = 𝐹)
1093com12 1115 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴))) → ((𝐺𝐹) ↾ 𝐴) = 𝐹)
118, 10syl3an3b 1397 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐺𝐹) ↾ 𝐴) = 𝐹)
122, 11syl5eq 2865 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  cun 3931  cin 3932  cres 5550  wf 6344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-dm 5558  df-res 5560  df-fun 6350  df-fn 6351  df-f 6352
This theorem is referenced by:  mapunen  8674  hashf1lem1  13801  ptuncnv  22343  resf1o  30392  cvmliftlem10  32438  aacllem  44830
  Copyright terms: Public domain W3C validator