![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fresaunres1 | Structured version Visualization version GIF version |
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
fresaunres1 | ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4152 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
2 | 1 | reseq1i 5976 | . 2 ⊢ ((𝐹 ∪ 𝐺) ↾ 𝐴) = ((𝐺 ∪ 𝐹) ↾ 𝐴) |
3 | incom 4200 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
4 | 3 | reseq2i 5977 | . . . . 5 ⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ (𝐵 ∩ 𝐴)) |
5 | 3 | reseq2i 5977 | . . . . 5 ⊢ (𝐺 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) |
6 | 4, 5 | eqeq12i 2748 | . . . 4 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴))) |
7 | eqcom 2737 | . . . 4 ⊢ ((𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) |
9 | fresaunres2 6762 | . . . 4 ⊢ ((𝐺:𝐵⟶𝐶 ∧ 𝐹:𝐴⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) | |
10 | 9 | 3com12 1121 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
11 | 8, 10 | syl3an3b 1403 | . 2 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
12 | 2, 11 | eqtrid 2782 | 1 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∪ cun 3945 ∩ cin 3946 ↾ cres 5677 ⟶wf 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-dm 5685 df-res 5687 df-fun 6544 df-fn 6545 df-f 6546 |
This theorem is referenced by: mapunen 9148 hashf1lem1 14419 hashf1lem1OLD 14420 ptuncnv 23531 resf1o 32222 cvmliftlem10 34583 aacllem 47935 |
Copyright terms: Public domain | W3C validator |