| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fresaunres1 | Structured version Visualization version GIF version | ||
| Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| fresaunres1 | ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4158 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
| 2 | 1 | reseq1i 5993 | . 2 ⊢ ((𝐹 ∪ 𝐺) ↾ 𝐴) = ((𝐺 ∪ 𝐹) ↾ 𝐴) |
| 3 | incom 4209 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 4 | 3 | reseq2i 5994 | . . . . 5 ⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ (𝐵 ∩ 𝐴)) |
| 5 | 3 | reseq2i 5994 | . . . . 5 ⊢ (𝐺 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) |
| 6 | 4, 5 | eqeq12i 2755 | . . . 4 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴))) |
| 7 | eqcom 2744 | . . . 4 ⊢ ((𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) |
| 9 | fresaunres2 6780 | . . . 4 ⊢ ((𝐺:𝐵⟶𝐶 ∧ 𝐹:𝐴⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) | |
| 10 | 9 | 3com12 1124 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
| 11 | 8, 10 | syl3an3b 1407 | . 2 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
| 12 | 2, 11 | eqtrid 2789 | 1 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∪ cun 3949 ∩ cin 3950 ↾ cres 5687 ⟶wf 6557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-dm 5695 df-res 5697 df-fun 6563 df-fn 6564 df-f 6565 |
| This theorem is referenced by: mapunen 9186 hashf1lem1 14494 ptuncnv 23815 resf1o 32741 cvmliftlem10 35299 aacllem 49320 |
| Copyright terms: Public domain | W3C validator |