Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fresaunres1 | Structured version Visualization version GIF version |
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
fresaunres1 | ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4083 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
2 | 1 | reseq1i 5876 | . 2 ⊢ ((𝐹 ∪ 𝐺) ↾ 𝐴) = ((𝐺 ∪ 𝐹) ↾ 𝐴) |
3 | incom 4131 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
4 | 3 | reseq2i 5877 | . . . . 5 ⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ (𝐵 ∩ 𝐴)) |
5 | 3 | reseq2i 5877 | . . . . 5 ⊢ (𝐺 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) |
6 | 4, 5 | eqeq12i 2756 | . . . 4 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴))) |
7 | eqcom 2745 | . . . 4 ⊢ ((𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) |
9 | fresaunres2 6630 | . . . 4 ⊢ ((𝐺:𝐵⟶𝐶 ∧ 𝐹:𝐴⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) | |
10 | 9 | 3com12 1121 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
11 | 8, 10 | syl3an3b 1403 | . 2 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
12 | 2, 11 | eqtrid 2790 | 1 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∪ cun 3881 ∩ cin 3882 ↾ cres 5582 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: mapunen 8882 hashf1lem1 14096 hashf1lem1OLD 14097 ptuncnv 22866 resf1o 30967 cvmliftlem10 33156 aacllem 46391 |
Copyright terms: Public domain | W3C validator |