MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres1 Structured version   Visualization version   GIF version

Theorem fresaunres1 6631
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.)
Assertion
Ref Expression
fresaunres1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)

Proof of Theorem fresaunres1
StepHypRef Expression
1 uncom 4083 . . 3 (𝐹𝐺) = (𝐺𝐹)
21reseq1i 5876 . 2 ((𝐹𝐺) ↾ 𝐴) = ((𝐺𝐹) ↾ 𝐴)
3 incom 4131 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
43reseq2i 5877 . . . . 5 (𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐵𝐴))
53reseq2i 5877 . . . . 5 (𝐺 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐵𝐴))
64, 5eqeq12i 2756 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐵𝐴)) = (𝐺 ↾ (𝐵𝐴)))
7 eqcom 2745 . . . 4 ((𝐹 ↾ (𝐵𝐴)) = (𝐺 ↾ (𝐵𝐴)) ↔ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴)))
86, 7bitri 274 . . 3 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) ↔ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴)))
9 fresaunres2 6630 . . . 4 ((𝐺:𝐵𝐶𝐹:𝐴𝐶 ∧ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴))) → ((𝐺𝐹) ↾ 𝐴) = 𝐹)
1093com12 1121 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐺 ↾ (𝐵𝐴)) = (𝐹 ↾ (𝐵𝐴))) → ((𝐺𝐹) ↾ 𝐴) = 𝐹)
118, 10syl3an3b 1403 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐺𝐹) ↾ 𝐴) = 𝐹)
122, 11eqtrid 2790 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  cun 3881  cin 3882  cres 5582  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-dm 5590  df-res 5592  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  mapunen  8882  hashf1lem1  14096  hashf1lem1OLD  14097  ptuncnv  22866  resf1o  30967  cvmliftlem10  33156  aacllem  46391
  Copyright terms: Public domain W3C validator