| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fresaunres1 | Structured version Visualization version GIF version | ||
| Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| fresaunres1 | ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4117 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
| 2 | 1 | reseq1i 5935 | . 2 ⊢ ((𝐹 ∪ 𝐺) ↾ 𝐴) = ((𝐺 ∪ 𝐹) ↾ 𝐴) |
| 3 | incom 4168 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 4 | 3 | reseq2i 5936 | . . . . 5 ⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ (𝐵 ∩ 𝐴)) |
| 5 | 3 | reseq2i 5936 | . . . . 5 ⊢ (𝐺 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) |
| 6 | 4, 5 | eqeq12i 2747 | . . . 4 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴))) |
| 7 | eqcom 2736 | . . . 4 ⊢ ((𝐹 ↾ (𝐵 ∩ 𝐴)) = (𝐺 ↾ (𝐵 ∩ 𝐴)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵)) ↔ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) |
| 9 | fresaunres2 6714 | . . . 4 ⊢ ((𝐺:𝐵⟶𝐶 ∧ 𝐹:𝐴⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) | |
| 10 | 9 | 3com12 1123 | . . 3 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐺 ↾ (𝐵 ∩ 𝐴)) = (𝐹 ↾ (𝐵 ∩ 𝐴))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
| 11 | 8, 10 | syl3an3b 1407 | . 2 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐺 ∪ 𝐹) ↾ 𝐴) = 𝐹) |
| 12 | 2, 11 | eqtrid 2776 | 1 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐵⟶𝐶 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∪ cun 3909 ∩ cin 3910 ↾ cres 5633 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-res 5643 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: mapunen 9087 hashf1lem1 14396 ptuncnv 23727 resf1o 32703 cvmliftlem10 35274 aacllem 49783 |
| Copyright terms: Public domain | W3C validator |