MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logrec Structured version   Visualization version   GIF version

Theorem logrec 26824
Description: Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016.)
Assertion
Ref Expression
logrec ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))

Proof of Theorem logrec
StepHypRef Expression
1 reccl 11956 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
2 recne0 11962 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0)
3 eflog 26636 . . . . . . . 8 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (exp‘(log‘(1 / 𝐴))) = (1 / 𝐴))
41, 2, 3syl2anc 583 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘(1 / 𝐴))) = (1 / 𝐴))
54eqcomd 2746 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (exp‘(log‘(1 / 𝐴))))
65oveq2d 7464 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = (1 / (exp‘(log‘(1 / 𝐴)))))
7 eflog 26636 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
8 recrec 11991 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
97, 8eqtr4d 2783 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (1 / (1 / 𝐴)))
101, 2logcld 26630 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 / 𝐴)) ∈ ℂ)
11 efneg 16146 . . . . . 6 ((log‘(1 / 𝐴)) ∈ ℂ → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴)))))
1210, 11syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴)))))
136, 9, 123eqtr4d 2790 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (exp‘-(log‘(1 / 𝐴))))
14133adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (exp‘(log‘𝐴)) = (exp‘-(log‘(1 / 𝐴))))
1514fveq2d 6924 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘(log‘𝐴))) = (log‘(exp‘-(log‘(1 / 𝐴)))))
16 logrncl 26627 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log)
17163adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) ∈ ran log)
18 logef 26641 . . 3 ((log‘𝐴) ∈ ran log → (log‘(exp‘(log‘𝐴))) = (log‘𝐴))
1917, 18syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘(log‘𝐴))) = (log‘𝐴))
20 df-ne 2947 . . . . 5 ((ℑ‘(log‘𝐴)) ≠ π ↔ ¬ (ℑ‘(log‘𝐴)) = π)
21 lognegb 26650 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π))
221, 2, 21syl2anc 583 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π))
2322biimprd 248 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → -(1 / 𝐴) ∈ ℝ+))
24 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
25 divneg2 12018 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴))
2624, 25mp3an1 1448 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴))
2726eleq1d 2829 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (1 / -𝐴) ∈ ℝ+))
2823, 27sylibd 239 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → (1 / -𝐴) ∈ ℝ+))
29 negcl 11536 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
30 negeq0 11590 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3130necon3bid 2991 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3231biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
33 rpreccl 13083 . . . . . . . . . . 11 ((1 / -𝐴) ∈ ℝ+ → (1 / (1 / -𝐴)) ∈ ℝ+)
34 recrec 11991 . . . . . . . . . . . 12 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → (1 / (1 / -𝐴)) = -𝐴)
3534eleq1d 2829 . . . . . . . . . . 11 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / (1 / -𝐴)) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
3633, 35imbitrid 244 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+ → -𝐴 ∈ ℝ+))
3729, 32, 36syl2an2r 684 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+ → -𝐴 ∈ ℝ+))
3828, 37syld 47 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → -𝐴 ∈ ℝ+))
39 lognegb 26650 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
4038, 39sylibd 239 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → (ℑ‘(log‘𝐴)) = π))
4140con3d 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (ℑ‘(log‘𝐴)) = π → ¬ (ℑ‘(log‘(1 / 𝐴))) = π))
42413impia 1117 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬ (ℑ‘(log‘𝐴)) = π) → ¬ (ℑ‘(log‘(1 / 𝐴))) = π)
4320, 42syl3an3b 1405 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → ¬ (ℑ‘(log‘(1 / 𝐴))) = π)
44 logrncl 26627 . . . . . 6 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (log‘(1 / 𝐴)) ∈ ran log)
451, 2, 44syl2anc 583 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 / 𝐴)) ∈ ran log)
46 logreclem 26823 . . . . 5 (((log‘(1 / 𝐴)) ∈ ran log ∧ ¬ (ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran log)
4745, 46stoic3 1774 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬ (ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran log)
4843, 47syld3an3 1409 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → -(log‘(1 / 𝐴)) ∈ ran log)
49 logef 26641 . . 3 (-(log‘(1 / 𝐴)) ∈ ran log → (log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴)))
5048, 49syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴)))
5115, 19, 503eqtr3d 2788 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  ran crn 5701  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  -cneg 11521   / cdiv 11947  +crp 13057  cim 15147  expce 16109  πcpi 16114  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  logbrec  26843  isosctrlem2  26880
  Copyright terms: Public domain W3C validator