Proof of Theorem logrec
Step | Hyp | Ref
| Expression |
1 | | reccl 11640 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℂ) |
2 | | recne0 11646 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0) |
3 | | eflog 25730 |
. . . . . . . 8
⊢ (((1 /
𝐴) ∈ ℂ ∧ (1
/ 𝐴) ≠ 0) →
(exp‘(log‘(1 / 𝐴))) = (1 / 𝐴)) |
4 | 1, 2, 3 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘(1 / 𝐴))) = (1 / 𝐴)) |
5 | 4 | eqcomd 2746 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (exp‘(log‘(1 /
𝐴)))) |
6 | 5 | oveq2d 7287 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = (1 /
(exp‘(log‘(1 / 𝐴))))) |
7 | | eflog 25730 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) |
8 | | recrec 11672 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴) |
9 | 7, 8 | eqtr4d 2783 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
(1 / (1 / 𝐴))) |
10 | 1, 2 | logcld 25724 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 /
𝐴)) ∈
ℂ) |
11 | | efneg 15805 |
. . . . . 6
⊢
((log‘(1 / 𝐴))
∈ ℂ → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴))))) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴))))) |
13 | 6, 9, 12 | 3eqtr4d 2790 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
(exp‘-(log‘(1 / 𝐴)))) |
14 | 13 | 3adant3 1131 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(exp‘(log‘𝐴)) =
(exp‘-(log‘(1 / 𝐴)))) |
15 | 14 | fveq2d 6775 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(log‘(exp‘(log‘𝐴))) = (log‘(exp‘-(log‘(1 /
𝐴))))) |
16 | | logrncl 25721 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran
log) |
17 | 16 | 3adant3 1131 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) ∈ ran
log) |
18 | | logef 25735 |
. . 3
⊢
((log‘𝐴)
∈ ran log → (log‘(exp‘(log‘𝐴))) = (log‘𝐴)) |
19 | 17, 18 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(log‘(exp‘(log‘𝐴))) = (log‘𝐴)) |
20 | | df-ne 2946 |
. . . . 5
⊢
((ℑ‘(log‘𝐴)) ≠ π ↔ ¬
(ℑ‘(log‘𝐴)) = π) |
21 | | lognegb 25743 |
. . . . . . . . . . . 12
⊢ (((1 /
𝐴) ∈ ℂ ∧ (1
/ 𝐴) ≠ 0) → (-(1 /
𝐴) ∈
ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π)) |
22 | 1, 2, 21 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+
↔ (ℑ‘(log‘(1 / 𝐴))) = π)) |
23 | 22 | biimprd 247 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π → -(1 / 𝐴) ∈
ℝ+)) |
24 | | ax-1cn 10930 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
25 | | divneg2 11699 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ ∧ 𝐴 ≠
0) → -(1 / 𝐴) = (1 /
-𝐴)) |
26 | 24, 25 | mp3an1 1447 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴)) |
27 | 26 | eleq1d 2825 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+
↔ (1 / -𝐴) ∈
ℝ+)) |
28 | 23, 27 | sylibd 238 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π → (1 / -𝐴) ∈
ℝ+)) |
29 | | negcl 11221 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
30 | | negeq0 11275 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) |
31 | 30 | necon3bid 2990 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) |
32 | 31 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0) |
33 | | rpreccl 12755 |
. . . . . . . . . . 11
⊢ ((1 /
-𝐴) ∈
ℝ+ → (1 / (1 / -𝐴)) ∈
ℝ+) |
34 | | recrec 11672 |
. . . . . . . . . . . 12
⊢ ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → (1 / (1 / -𝐴)) = -𝐴) |
35 | 34 | eleq1d 2825 |
. . . . . . . . . . 11
⊢ ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / (1 /
-𝐴)) ∈
ℝ+ ↔ -𝐴 ∈
ℝ+)) |
36 | 33, 35 | syl5ib 243 |
. . . . . . . . . 10
⊢ ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+
→ -𝐴 ∈
ℝ+)) |
37 | 29, 32, 36 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+
→ -𝐴 ∈
ℝ+)) |
38 | 28, 37 | syld 47 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π → -𝐴 ∈
ℝ+)) |
39 | | lognegb 25743 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+
↔ (ℑ‘(log‘𝐴)) = π)) |
40 | 38, 39 | sylibd 238 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π →
(ℑ‘(log‘𝐴)) = π)) |
41 | 40 | con3d 152 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬
(ℑ‘(log‘𝐴)) = π → ¬
(ℑ‘(log‘(1 / 𝐴))) = π)) |
42 | 41 | 3impia 1116 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬
(ℑ‘(log‘𝐴)) = π) → ¬
(ℑ‘(log‘(1 / 𝐴))) = π) |
43 | 20, 42 | syl3an3b 1404 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → ¬
(ℑ‘(log‘(1 / 𝐴))) = π) |
44 | | logrncl 25721 |
. . . . . 6
⊢ (((1 /
𝐴) ∈ ℂ ∧ (1
/ 𝐴) ≠ 0) →
(log‘(1 / 𝐴)) ∈
ran log) |
45 | 1, 2, 44 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 /
𝐴)) ∈ ran
log) |
46 | | logreclem 25910 |
. . . . 5
⊢
(((log‘(1 / 𝐴)) ∈ ran log ∧ ¬
(ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran
log) |
47 | 45, 46 | stoic3 1783 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬
(ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran
log) |
48 | 43, 47 | syld3an3 1408 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → -(log‘(1 / 𝐴)) ∈ ran
log) |
49 | | logef 25735 |
. . 3
⊢
(-(log‘(1 / 𝐴)) ∈ ran log →
(log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴))) |
50 | 48, 49 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴))) |
51 | 15, 19, 50 | 3eqtr3d 2788 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴))) |