MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logrec Structured version   Visualization version   GIF version

Theorem logrec 26807
Description: Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016.)
Assertion
Ref Expression
logrec ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))

Proof of Theorem logrec
StepHypRef Expression
1 reccl 11930 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
2 recne0 11936 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0)
3 eflog 26619 . . . . . . . 8 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (exp‘(log‘(1 / 𝐴))) = (1 / 𝐴))
41, 2, 3syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘(1 / 𝐴))) = (1 / 𝐴))
54eqcomd 2742 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (exp‘(log‘(1 / 𝐴))))
65oveq2d 7448 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = (1 / (exp‘(log‘(1 / 𝐴)))))
7 eflog 26619 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
8 recrec 11965 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴)
97, 8eqtr4d 2779 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (1 / (1 / 𝐴)))
101, 2logcld 26613 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 / 𝐴)) ∈ ℂ)
11 efneg 16135 . . . . . 6 ((log‘(1 / 𝐴)) ∈ ℂ → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴)))))
1210, 11syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴)))))
136, 9, 123eqtr4d 2786 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = (exp‘-(log‘(1 / 𝐴))))
14133adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (exp‘(log‘𝐴)) = (exp‘-(log‘(1 / 𝐴))))
1514fveq2d 6909 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘(log‘𝐴))) = (log‘(exp‘-(log‘(1 / 𝐴)))))
16 logrncl 26610 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran log)
17163adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) ∈ ran log)
18 logef 26624 . . 3 ((log‘𝐴) ∈ ran log → (log‘(exp‘(log‘𝐴))) = (log‘𝐴))
1917, 18syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘(log‘𝐴))) = (log‘𝐴))
20 df-ne 2940 . . . . 5 ((ℑ‘(log‘𝐴)) ≠ π ↔ ¬ (ℑ‘(log‘𝐴)) = π)
21 lognegb 26633 . . . . . . . . . . . 12 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π))
221, 2, 21syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π))
2322biimprd 248 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → -(1 / 𝐴) ∈ ℝ+))
24 ax-1cn 11214 . . . . . . . . . . . 12 1 ∈ ℂ
25 divneg2 11992 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴))
2624, 25mp3an1 1449 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴))
2726eleq1d 2825 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+ ↔ (1 / -𝐴) ∈ ℝ+))
2823, 27sylibd 239 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → (1 / -𝐴) ∈ ℝ+))
29 negcl 11509 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
30 negeq0 11564 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3130necon3bid 2984 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3231biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
33 rpreccl 13062 . . . . . . . . . . 11 ((1 / -𝐴) ∈ ℝ+ → (1 / (1 / -𝐴)) ∈ ℝ+)
34 recrec 11965 . . . . . . . . . . . 12 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → (1 / (1 / -𝐴)) = -𝐴)
3534eleq1d 2825 . . . . . . . . . . 11 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / (1 / -𝐴)) ∈ ℝ+ ↔ -𝐴 ∈ ℝ+))
3633, 35imbitrid 244 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+ → -𝐴 ∈ ℝ+))
3729, 32, 36syl2an2r 685 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+ → -𝐴 ∈ ℝ+))
3828, 37syld 47 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → -𝐴 ∈ ℝ+))
39 lognegb 26633 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
4038, 39sylibd 239 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘(1 / 𝐴))) = π → (ℑ‘(log‘𝐴)) = π))
4140con3d 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (ℑ‘(log‘𝐴)) = π → ¬ (ℑ‘(log‘(1 / 𝐴))) = π))
42413impia 1117 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬ (ℑ‘(log‘𝐴)) = π) → ¬ (ℑ‘(log‘(1 / 𝐴))) = π)
4320, 42syl3an3b 1406 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → ¬ (ℑ‘(log‘(1 / 𝐴))) = π)
44 logrncl 26610 . . . . . 6 (((1 / 𝐴) ∈ ℂ ∧ (1 / 𝐴) ≠ 0) → (log‘(1 / 𝐴)) ∈ ran log)
451, 2, 44syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 / 𝐴)) ∈ ran log)
46 logreclem 26806 . . . . 5 (((log‘(1 / 𝐴)) ∈ ran log ∧ ¬ (ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran log)
4745, 46stoic3 1775 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬ (ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran log)
4843, 47syld3an3 1410 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → -(log‘(1 / 𝐴)) ∈ ran log)
49 logef 26624 . . 3 (-(log‘(1 / 𝐴)) ∈ ran log → (log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴)))
5048, 49syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴)))
5115, 19, 503eqtr3d 2784 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  ran crn 5685  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157  -cneg 11494   / cdiv 11921  +crp 13035  cim 15138  expce 16098  πcpi 16103  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  logbrec  26826  isosctrlem2  26863
  Copyright terms: Public domain W3C validator