Proof of Theorem logrec
| Step | Hyp | Ref
| Expression |
| 1 | | reccl 11908 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℂ) |
| 2 | | recne0 11914 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0) |
| 3 | | eflog 26542 |
. . . . . . . 8
⊢ (((1 /
𝐴) ∈ ℂ ∧ (1
/ 𝐴) ≠ 0) →
(exp‘(log‘(1 / 𝐴))) = (1 / 𝐴)) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘(1 / 𝐴))) = (1 / 𝐴)) |
| 5 | 4 | eqcomd 2742 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) = (exp‘(log‘(1 /
𝐴)))) |
| 6 | 5 | oveq2d 7426 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = (1 /
(exp‘(log‘(1 / 𝐴))))) |
| 7 | | eflog 26542 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) |
| 8 | | recrec 11943 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴) |
| 9 | 7, 8 | eqtr4d 2774 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
(1 / (1 / 𝐴))) |
| 10 | 1, 2 | logcld 26536 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 /
𝐴)) ∈
ℂ) |
| 11 | | efneg 16121 |
. . . . . 6
⊢
((log‘(1 / 𝐴))
∈ ℂ → (exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴))))) |
| 12 | 10, 11 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘-(log‘(1 / 𝐴))) = (1 / (exp‘(log‘(1 / 𝐴))))) |
| 13 | 6, 9, 12 | 3eqtr4d 2781 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
(exp‘-(log‘(1 / 𝐴)))) |
| 14 | 13 | 3adant3 1132 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(exp‘(log‘𝐴)) =
(exp‘-(log‘(1 / 𝐴)))) |
| 15 | 14 | fveq2d 6885 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(log‘(exp‘(log‘𝐴))) = (log‘(exp‘-(log‘(1 /
𝐴))))) |
| 16 | | logrncl 26533 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ran
log) |
| 17 | 16 | 3adant3 1132 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) ∈ ran
log) |
| 18 | | logef 26547 |
. . 3
⊢
((log‘𝐴)
∈ ran log → (log‘(exp‘(log‘𝐴))) = (log‘𝐴)) |
| 19 | 17, 18 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(log‘(exp‘(log‘𝐴))) = (log‘𝐴)) |
| 20 | | df-ne 2934 |
. . . . 5
⊢
((ℑ‘(log‘𝐴)) ≠ π ↔ ¬
(ℑ‘(log‘𝐴)) = π) |
| 21 | | lognegb 26556 |
. . . . . . . . . . . 12
⊢ (((1 /
𝐴) ∈ ℂ ∧ (1
/ 𝐴) ≠ 0) → (-(1 /
𝐴) ∈
ℝ+ ↔ (ℑ‘(log‘(1 / 𝐴))) = π)) |
| 22 | 1, 2, 21 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+
↔ (ℑ‘(log‘(1 / 𝐴))) = π)) |
| 23 | 22 | biimprd 248 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π → -(1 / 𝐴) ∈
ℝ+)) |
| 24 | | ax-1cn 11192 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 25 | | divneg2 11970 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ ∧ 𝐴 ≠
0) → -(1 / 𝐴) = (1 /
-𝐴)) |
| 26 | 24, 25 | mp3an1 1450 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -(1 / 𝐴) = (1 / -𝐴)) |
| 27 | 26 | eleq1d 2820 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-(1 / 𝐴) ∈ ℝ+
↔ (1 / -𝐴) ∈
ℝ+)) |
| 28 | 23, 27 | sylibd 239 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π → (1 / -𝐴) ∈
ℝ+)) |
| 29 | | negcl 11487 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
| 30 | | negeq0 11542 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) |
| 31 | 30 | necon3bid 2977 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) |
| 32 | 31 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0) |
| 33 | | rpreccl 13040 |
. . . . . . . . . . 11
⊢ ((1 /
-𝐴) ∈
ℝ+ → (1 / (1 / -𝐴)) ∈
ℝ+) |
| 34 | | recrec 11943 |
. . . . . . . . . . . 12
⊢ ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → (1 / (1 / -𝐴)) = -𝐴) |
| 35 | 34 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / (1 /
-𝐴)) ∈
ℝ+ ↔ -𝐴 ∈
ℝ+)) |
| 36 | 33, 35 | imbitrid 244 |
. . . . . . . . . 10
⊢ ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+
→ -𝐴 ∈
ℝ+)) |
| 37 | 29, 32, 36 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / -𝐴) ∈ ℝ+
→ -𝐴 ∈
ℝ+)) |
| 38 | 28, 37 | syld 47 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π → -𝐴 ∈
ℝ+)) |
| 39 | | lognegb 26556 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+
↔ (ℑ‘(log‘𝐴)) = π)) |
| 40 | 38, 39 | sylibd 239 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((ℑ‘(log‘(1 / 𝐴))) = π →
(ℑ‘(log‘𝐴)) = π)) |
| 41 | 40 | con3d 152 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬
(ℑ‘(log‘𝐴)) = π → ¬
(ℑ‘(log‘(1 / 𝐴))) = π)) |
| 42 | 41 | 3impia 1117 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬
(ℑ‘(log‘𝐴)) = π) → ¬
(ℑ‘(log‘(1 / 𝐴))) = π) |
| 43 | 20, 42 | syl3an3b 1407 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → ¬
(ℑ‘(log‘(1 / 𝐴))) = π) |
| 44 | | logrncl 26533 |
. . . . . 6
⊢ (((1 /
𝐴) ∈ ℂ ∧ (1
/ 𝐴) ≠ 0) →
(log‘(1 / 𝐴)) ∈
ran log) |
| 45 | 1, 2, 44 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘(1 /
𝐴)) ∈ ran
log) |
| 46 | | logreclem 26729 |
. . . . 5
⊢
(((log‘(1 / 𝐴)) ∈ ran log ∧ ¬
(ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran
log) |
| 47 | 45, 46 | stoic3 1776 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ¬
(ℑ‘(log‘(1 / 𝐴))) = π) → -(log‘(1 / 𝐴)) ∈ ran
log) |
| 48 | 43, 47 | syld3an3 1411 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → -(log‘(1 / 𝐴)) ∈ ran
log) |
| 49 | | logef 26547 |
. . 3
⊢
(-(log‘(1 / 𝐴)) ∈ ran log →
(log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴))) |
| 50 | 48, 49 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) →
(log‘(exp‘-(log‘(1 / 𝐴)))) = -(log‘(1 / 𝐴))) |
| 51 | 15, 19, 50 | 3eqtr3d 2779 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧
(ℑ‘(log‘𝐴)) ≠ π) → (log‘𝐴) = -(log‘(1 / 𝐴))) |