MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptt Structured version   Visualization version   GIF version

Theorem fvmptt 6892
Description: Closed theorem form of fvmpt 6872. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fvmptt ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptt
StepHypRef Expression
1 simp2 1136 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → 𝐹 = (𝑥𝐷𝐵))
21fveq1d 6773 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = ((𝑥𝐷𝐵)‘𝐴))
3 risset 3196 . . . . 5 (𝐴𝐷 ↔ ∃𝑥𝐷 𝑥 = 𝐴)
4 elex 3449 . . . . . 6 (𝐶𝑉𝐶 ∈ V)
5 nfa1 2152 . . . . . . 7 𝑥𝑥(𝑥 = 𝐴𝐵 = 𝐶)
6 nfv 1921 . . . . . . . 8 𝑥 𝐶 ∈ V
7 nffvmpt1 6782 . . . . . . . . 9 𝑥((𝑥𝐷𝐵)‘𝐴)
87nfeq1 2924 . . . . . . . 8 𝑥((𝑥𝐷𝐵)‘𝐴) = 𝐶
96, 8nfim 1903 . . . . . . 7 𝑥(𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
10 simprl 768 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥𝐷)
11 simplr 766 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 = 𝐶)
12 simprr 770 . . . . . . . . . . . . . 14 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐶 ∈ V)
1311, 12eqeltrd 2841 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝐵 ∈ V)
14 eqid 2740 . . . . . . . . . . . . . 14 (𝑥𝐷𝐵) = (𝑥𝐷𝐵)
1514fvmpt2 6883 . . . . . . . . . . . . 13 ((𝑥𝐷𝐵 ∈ V) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
1610, 13, 15syl2anc 584 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = 𝐵)
17 simpll 764 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → 𝑥 = 𝐴)
1817fveq2d 6775 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝑥) = ((𝑥𝐷𝐵)‘𝐴))
1916, 18, 113eqtr3d 2788 . . . . . . . . . . 11 (((𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝑥𝐷𝐶 ∈ V)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
2019exp43 437 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐵 = 𝐶 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2120a2i 14 . . . . . . . . 9 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥 = 𝐴 → (𝑥𝐷 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2221com23 86 . . . . . . . 8 ((𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
2322sps 2182 . . . . . . 7 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝑥𝐷 → (𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶))))
245, 9, 23rexlimd 3248 . . . . . 6 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶 ∈ V → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
254, 24syl7 74 . . . . 5 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (∃𝑥𝐷 𝑥 = 𝐴 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
263, 25syl5bi 241 . . . 4 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → (𝐴𝐷 → (𝐶𝑉 → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)))
2726imp32 419 . . 3 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
28273adant2 1130 . 2 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → ((𝑥𝐷𝐵)‘𝐴) = 𝐶)
292, 28eqtrd 2780 1 ((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1540   = wceq 1542  wcel 2110  wrex 3067  Vcvv 3431  cmpt 5162  cfv 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fv 6440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator