Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem3N Structured version   Visualization version   GIF version

Theorem dihmeetlem3N 39013
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem3.b 𝐵 = (Base‘𝐾)
dihmeetlem3.l = (le‘𝐾)
dihmeetlem3.j = (join‘𝐾)
dihmeetlem3.m = (meet‘𝐾)
dihmeetlem3.a 𝐴 = (Atoms‘𝐾)
dihmeetlem3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dihmeetlem3N ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → 𝑄𝑅)

Proof of Theorem dihmeetlem3N
StepHypRef Expression
1 simp2lr 1243 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → ¬ 𝑄 𝑊)
2 oveq1 7209 . . . . . . 7 (𝑄 = 𝑅 → (𝑄 (𝑌 𝑊)) = (𝑅 (𝑌 𝑊)))
3 simpr 488 . . . . . . 7 (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) → (𝑅 (𝑌 𝑊)) = 𝑌)
42, 3sylan9eqr 2796 . . . . . 6 ((((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → (𝑄 (𝑌 𝑊)) = 𝑌)
5 dihmeetlem3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 dihmeetlem3.l . . . . . . . 8 = (le‘𝐾)
7 simp11l 1286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝐾 ∈ HL)
87hllatd 37072 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝐾 ∈ Lat)
9 simp2ll 1242 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄𝐴)
10 dihmeetlem3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
115, 10atbase 36997 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
129, 11syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄𝐵)
13 simp12l 1288 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑋𝐵)
14 simp12r 1289 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑌𝐵)
15 dihmeetlem3.m . . . . . . . . . 10 = (meet‘𝐾)
165, 15latmcl 17918 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
178, 13, 14, 16syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑌) ∈ 𝐵)
18 simp11r 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑊𝐻)
19 dihmeetlem3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
205, 19lhpbase 37706 . . . . . . . . 9 (𝑊𝐻𝑊𝐵)
2118, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑊𝐵)
225, 15latmcl 17918 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
238, 13, 21, 22syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑊) ∈ 𝐵)
24 dihmeetlem3.j . . . . . . . . . . . 12 = (join‘𝐾)
255, 6, 24latlej1 17926 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑄 (𝑄 (𝑋 𝑊)))
268, 12, 23, 25syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑄 (𝑋 𝑊)))
27 simp2r 1202 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑄 (𝑋 𝑊)) = 𝑋)
2826, 27breqtrd 5069 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑋)
295, 15latmcl 17918 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
308, 14, 21, 29syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑌 𝑊) ∈ 𝐵)
315, 6, 24latlej1 17926 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → 𝑄 (𝑄 (𝑌 𝑊)))
328, 12, 30, 31syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑄 (𝑌 𝑊)))
33 simp3 1140 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑄 (𝑌 𝑊)) = 𝑌)
3432, 33breqtrd 5069 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑌)
355, 6, 15latlem12 17944 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄𝐵𝑋𝐵𝑌𝐵)) → ((𝑄 𝑋𝑄 𝑌) ↔ 𝑄 (𝑋 𝑌)))
368, 12, 13, 14, 35syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → ((𝑄 𝑋𝑄 𝑌) ↔ 𝑄 (𝑋 𝑌)))
3728, 34, 36mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑋 𝑌))
38 simp13 1207 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑌) 𝑊)
395, 6, 8, 12, 17, 21, 37, 38lattrd 17924 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑊)
40393exp 1121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → ((𝑄 (𝑌 𝑊)) = 𝑌𝑄 𝑊)))
414, 40syl7 74 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → ((((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → 𝑄 𝑊)))
4241exp4a 435 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) → (𝑄 = 𝑅𝑄 𝑊))))
43423imp 1113 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → (𝑄 = 𝑅𝑄 𝑊))
4443necon3bd 2949 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → (¬ 𝑄 𝑊𝑄𝑅))
451, 44mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → 𝑄𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935   class class class wbr 5043  cfv 6369  (class class class)co 7202  Basecbs 16684  lecple 16774  joincjn 17790  meetcmee 17791  Latclat 17909  Atomscatm 36971  HLchlt 37058  LHypclh 37692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-poset 17792  df-lub 17824  df-glb 17825  df-join 17826  df-meet 17827  df-lat 17910  df-ats 36975  df-atl 37006  df-cvlat 37030  df-hlat 37059  df-lhyp 37696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator