Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem3N Structured version   Visualization version   GIF version

Theorem dihmeetlem3N 39319
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem3.b 𝐵 = (Base‘𝐾)
dihmeetlem3.l = (le‘𝐾)
dihmeetlem3.j = (join‘𝐾)
dihmeetlem3.m = (meet‘𝐾)
dihmeetlem3.a 𝐴 = (Atoms‘𝐾)
dihmeetlem3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dihmeetlem3N ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → 𝑄𝑅)

Proof of Theorem dihmeetlem3N
StepHypRef Expression
1 simp2lr 1240 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → ¬ 𝑄 𝑊)
2 oveq1 7282 . . . . . . 7 (𝑄 = 𝑅 → (𝑄 (𝑌 𝑊)) = (𝑅 (𝑌 𝑊)))
3 simpr 485 . . . . . . 7 (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) → (𝑅 (𝑌 𝑊)) = 𝑌)
42, 3sylan9eqr 2800 . . . . . 6 ((((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → (𝑄 (𝑌 𝑊)) = 𝑌)
5 dihmeetlem3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 dihmeetlem3.l . . . . . . . 8 = (le‘𝐾)
7 simp11l 1283 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝐾 ∈ HL)
87hllatd 37378 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝐾 ∈ Lat)
9 simp2ll 1239 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄𝐴)
10 dihmeetlem3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
115, 10atbase 37303 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
129, 11syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄𝐵)
13 simp12l 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑋𝐵)
14 simp12r 1286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑌𝐵)
15 dihmeetlem3.m . . . . . . . . . 10 = (meet‘𝐾)
165, 15latmcl 18158 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
178, 13, 14, 16syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑌) ∈ 𝐵)
18 simp11r 1284 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑊𝐻)
19 dihmeetlem3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
205, 19lhpbase 38012 . . . . . . . . 9 (𝑊𝐻𝑊𝐵)
2118, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑊𝐵)
225, 15latmcl 18158 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
238, 13, 21, 22syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑊) ∈ 𝐵)
24 dihmeetlem3.j . . . . . . . . . . . 12 = (join‘𝐾)
255, 6, 24latlej1 18166 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑄 (𝑄 (𝑋 𝑊)))
268, 12, 23, 25syl3anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑄 (𝑋 𝑊)))
27 simp2r 1199 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑄 (𝑋 𝑊)) = 𝑋)
2826, 27breqtrd 5100 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑋)
295, 15latmcl 18158 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
308, 14, 21, 29syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑌 𝑊) ∈ 𝐵)
315, 6, 24latlej1 18166 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → 𝑄 (𝑄 (𝑌 𝑊)))
328, 12, 30, 31syl3anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑄 (𝑌 𝑊)))
33 simp3 1137 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑄 (𝑌 𝑊)) = 𝑌)
3432, 33breqtrd 5100 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑌)
355, 6, 15latlem12 18184 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄𝐵𝑋𝐵𝑌𝐵)) → ((𝑄 𝑋𝑄 𝑌) ↔ 𝑄 (𝑋 𝑌)))
368, 12, 13, 14, 35syl13anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → ((𝑄 𝑋𝑄 𝑌) ↔ 𝑄 (𝑋 𝑌)))
3728, 34, 36mpbi2and 709 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 (𝑋 𝑌))
38 simp13 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → (𝑋 𝑌) 𝑊)
395, 6, 8, 12, 17, 21, 37, 38lattrd 18164 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ (𝑄 (𝑌 𝑊)) = 𝑌) → 𝑄 𝑊)
40393exp 1118 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → ((𝑄 (𝑌 𝑊)) = 𝑌𝑄 𝑊)))
414, 40syl7 74 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → ((((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → 𝑄 𝑊)))
4241exp4a 432 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) → (((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌) → (𝑄 = 𝑅𝑄 𝑊))))
43423imp 1110 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → (𝑄 = 𝑅𝑄 𝑊))
4443necon3bd 2957 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → (¬ 𝑄 𝑊𝑄𝑅))
451, 44mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → 𝑄𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator