Proof of Theorem dihmeetlem3N
| Step | Hyp | Ref
| Expression |
| 1 | | simp2lr 1242 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → ¬ 𝑄 ≤ 𝑊) |
| 2 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑄 = 𝑅 → (𝑄 ∨ (𝑌 ∧ 𝑊)) = (𝑅 ∨ (𝑌 ∧ 𝑊))) |
| 3 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌) |
| 4 | 2, 3 | sylan9eqr 2799 |
. . . . . 6
⊢ ((((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) |
| 5 | | dihmeetlem3.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
| 6 | | dihmeetlem3.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 7 | | simp11l 1285 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝐾 ∈ HL) |
| 8 | 7 | hllatd 39365 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝐾 ∈ Lat) |
| 9 | | simp2ll 1241 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ∈ 𝐴) |
| 10 | | dihmeetlem3.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
| 11 | 5, 10 | atbase 39290 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 12 | 9, 11 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ∈ 𝐵) |
| 13 | | simp12l 1287 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑋 ∈ 𝐵) |
| 14 | | simp12r 1288 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑌 ∈ 𝐵) |
| 15 | | dihmeetlem3.m |
. . . . . . . . . 10
⊢ ∧ =
(meet‘𝐾) |
| 16 | 5, 15 | latmcl 18485 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 17 | 8, 13, 14, 16 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 18 | | simp11r 1286 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑊 ∈ 𝐻) |
| 19 | | dihmeetlem3.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
| 20 | 5, 19 | lhpbase 40000 |
. . . . . . . . 9
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 21 | 18, 20 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑊 ∈ 𝐵) |
| 22 | 5, 15 | latmcl 18485 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 23 | 8, 13, 21, 22 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 24 | | dihmeetlem3.j |
. . . . . . . . . . . 12
⊢ ∨ =
(join‘𝐾) |
| 25 | 5, 6, 24 | latlej1 18493 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → 𝑄 ≤ (𝑄 ∨ (𝑋 ∧ 𝑊))) |
| 26 | 8, 12, 23, 25 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ≤ (𝑄 ∨ (𝑋 ∧ 𝑊))) |
| 27 | | simp2r 1201 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
| 28 | 26, 27 | breqtrd 5169 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ≤ 𝑋) |
| 29 | 5, 15 | latmcl 18485 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
| 30 | 8, 14, 21, 29 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
| 31 | 5, 6, 24 | latlej1 18493 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → 𝑄 ≤ (𝑄 ∨ (𝑌 ∧ 𝑊))) |
| 32 | 8, 12, 30, 31 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ≤ (𝑄 ∨ (𝑌 ∧ 𝑊))) |
| 33 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) |
| 34 | 32, 33 | breqtrd 5169 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ≤ 𝑌) |
| 35 | 5, 6, 15 | latlem12 18511 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑄 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ↔ 𝑄 ≤ (𝑋 ∧ 𝑌))) |
| 36 | 8, 12, 13, 14, 35 | syl13anc 1374 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → ((𝑄 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ↔ 𝑄 ≤ (𝑋 ∧ 𝑌))) |
| 37 | 28, 34, 36 | mpbi2and 712 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ≤ (𝑋 ∧ 𝑌)) |
| 38 | | simp13 1206 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑋 ∧ 𝑌) ≤ 𝑊) |
| 39 | 5, 6, 8, 12, 17, 21, 37, 38 | lattrd 18491 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → 𝑄 ≤ 𝑊) |
| 40 | 39 | 3exp 1120 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((𝑄 ∨ (𝑌 ∧ 𝑊)) = 𝑌 → 𝑄 ≤ 𝑊))) |
| 41 | 4, 40 | syl7 74 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌) ∧ 𝑄 = 𝑅) → 𝑄 ≤ 𝑊))) |
| 42 | 41 | exp4a 431 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌) → (𝑄 = 𝑅 → 𝑄 ≤ 𝑊)))) |
| 43 | 42 | 3imp 1111 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝑄 = 𝑅 → 𝑄 ≤ 𝑊)) |
| 44 | 43 | necon3bd 2954 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (¬ 𝑄 ≤ 𝑊 → 𝑄 ≠ 𝑅)) |
| 45 | 1, 44 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → 𝑄 ≠ 𝑅) |