| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pr2nelemOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of enpr2 9931 as of 30-Dec-2024. (Contributed by FL, 17-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pr2nelemOLD | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn2 4672 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 2 | ensn1g 8970 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
| 3 | ensn1g 8970 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → {𝐵} ≈ 1o) | |
| 4 | pm54.43 9930 | . . . . . . 7 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2o)) | |
| 5 | df-pr 4588 | . . . . . . . 8 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 6 | 5 | breq1i 5109 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ ({𝐴} ∪ {𝐵}) ≈ 2o) |
| 7 | 4, 6 | bitr4di 289 | . . . . . 6 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2o)) |
| 8 | 7 | biimpd 229 | . . . . 5 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
| 9 | 2, 3, 8 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
| 10 | 9 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))) |
| 11 | 1, 10 | syl7 74 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o))) |
| 12 | 11 | 3imp 1110 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3909 ∩ cin 3910 ∅c0 4292 {csn 4585 {cpr 4587 class class class wbr 5102 1oc1o 8404 2oc2o 8405 ≈ cen 8892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |