![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pr2nelemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of enpr2 10040 as of 30-Dec-2024. (Contributed by FL, 17-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pr2nelemOLD | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn2 4717 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
2 | ensn1g 9061 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | ensn1g 9061 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → {𝐵} ≈ 1o) | |
4 | pm54.43 10039 | . . . . . . 7 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2o)) | |
5 | df-pr 4634 | . . . . . . . 8 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
6 | 5 | breq1i 5155 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ ({𝐴} ∪ {𝐵}) ≈ 2o) |
7 | 4, 6 | bitr4di 289 | . . . . . 6 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2o)) |
8 | 7 | biimpd 229 | . . . . 5 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
9 | 2, 3, 8 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
10 | 9 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))) |
11 | 1, 10 | syl7 74 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o))) |
12 | 11 | 3imp 1110 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 {csn 4631 {cpr 4633 class class class wbr 5148 1oc1o 8498 2oc2o 8499 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |