MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsep Structured version   Visualization version   GIF version

Theorem 2ndcsep 23483
Description: A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
2ndcsep.1 𝑋 = 𝐽
Assertion
Ref Expression
2ndcsep (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem 2ndcsep
Dummy variables 𝑓 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 23470 . 2 (𝐽 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
2 vex 3482 . . . . . . . . 9 𝑏 ∈ V
3 difss 4146 . . . . . . . . 9 (𝑏 ∖ {∅}) ⊆ 𝑏
4 ssdomg 9039 . . . . . . . . 9 (𝑏 ∈ V → ((𝑏 ∖ {∅}) ⊆ 𝑏 → (𝑏 ∖ {∅}) ≼ 𝑏))
52, 3, 4mp2 9 . . . . . . . 8 (𝑏 ∖ {∅}) ≼ 𝑏
6 simpr 484 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → 𝑏 ≼ ω)
7 domtr 9046 . . . . . . . 8 (((𝑏 ∖ {∅}) ≼ 𝑏𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
85, 6, 7sylancr 587 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
9 eldifsn 4791 . . . . . . . . 9 (𝑦 ∈ (𝑏 ∖ {∅}) ↔ (𝑦𝑏𝑦 ≠ ∅))
10 n0 4359 . . . . . . . . . 10 (𝑦 ≠ ∅ ↔ ∃𝑧 𝑧𝑦)
11 elunii 4917 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧 𝑏)
12 simpl 482 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧𝑦)
1311, 12jca 511 . . . . . . . . . . . . . 14 ((𝑧𝑦𝑦𝑏) → (𝑧 𝑏𝑧𝑦))
1413expcom 413 . . . . . . . . . . . . 13 (𝑦𝑏 → (𝑧𝑦 → (𝑧 𝑏𝑧𝑦)))
1514eximdv 1915 . . . . . . . . . . . 12 (𝑦𝑏 → (∃𝑧 𝑧𝑦 → ∃𝑧(𝑧 𝑏𝑧𝑦)))
1615imp 406 . . . . . . . . . . 11 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧(𝑧 𝑏𝑧𝑦))
17 df-rex 3069 . . . . . . . . . . 11 (∃𝑧 𝑏𝑧𝑦 ↔ ∃𝑧(𝑧 𝑏𝑧𝑦))
1816, 17sylibr 234 . . . . . . . . . 10 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧 𝑏𝑧𝑦)
1910, 18sylan2b 594 . . . . . . . . 9 ((𝑦𝑏𝑦 ≠ ∅) → ∃𝑧 𝑏𝑧𝑦)
209, 19sylbi 217 . . . . . . . 8 (𝑦 ∈ (𝑏 ∖ {∅}) → ∃𝑧 𝑏𝑧𝑦)
2120rgen 3061 . . . . . . 7 𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦
22 vuniex 7758 . . . . . . . 8 𝑏 ∈ V
23 eleq1 2827 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝑧𝑦 ↔ (𝑓𝑦) ∈ 𝑦))
2422, 23axcc4dom 10479 . . . . . . 7 (((𝑏 ∖ {∅}) ≼ ω ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
258, 21, 24sylancl 586 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
26 frn 6744 . . . . . . . . 9 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ran 𝑓 𝑏)
2726ad2antrl 728 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 𝑏)
28 vex 3482 . . . . . . . . . 10 𝑓 ∈ V
2928rnex 7933 . . . . . . . . 9 ran 𝑓 ∈ V
3029elpw 4609 . . . . . . . 8 (ran 𝑓 ∈ 𝒫 𝑏 ↔ ran 𝑓 𝑏)
3127, 30sylibr 234 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ∈ 𝒫 𝑏)
32 omelon 9684 . . . . . . . . . . 11 ω ∈ On
336adantr 480 . . . . . . . . . . 11 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ≼ ω)
34 ondomen 10075 . . . . . . . . . . 11 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
3532, 33, 34sylancr 587 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ∈ dom card)
36 ssnum 10077 . . . . . . . . . 10 ((𝑏 ∈ dom card ∧ (𝑏 ∖ {∅}) ⊆ 𝑏) → (𝑏 ∖ {∅}) ∈ dom card)
3735, 3, 36sylancl 586 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ∈ dom card)
38 ffn 6737 . . . . . . . . . . 11 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑓 Fn (𝑏 ∖ {∅}))
3938ad2antrl 728 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn (𝑏 ∖ {∅}))
40 dffn4 6827 . . . . . . . . . 10 (𝑓 Fn (𝑏 ∖ {∅}) ↔ 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
4139, 40sylib 218 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
42 fodomnum 10095 . . . . . . . . 9 ((𝑏 ∖ {∅}) ∈ dom card → (𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓 → ran 𝑓 ≼ (𝑏 ∖ {∅})))
4337, 41, 42sylc 65 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ (𝑏 ∖ {∅}))
448adantr 480 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ≼ ω)
45 domtr 9046 . . . . . . . 8 ((ran 𝑓 ≼ (𝑏 ∖ {∅}) ∧ (𝑏 ∖ {∅}) ≼ ω) → ran 𝑓 ≼ ω)
4643, 44, 45syl2anc 584 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ ω)
47 tgcl 22992 . . . . . . . . . 10 (𝑏 ∈ TopBases → (topGen‘𝑏) ∈ Top)
4847ad2antrr 726 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (topGen‘𝑏) ∈ Top)
49 unitg 22990 . . . . . . . . . . . 12 (𝑏 ∈ V → (topGen‘𝑏) = 𝑏)
5049elv 3483 . . . . . . . . . . 11 (topGen‘𝑏) = 𝑏
5150eqcomi 2744 . . . . . . . . . 10 𝑏 = (topGen‘𝑏)
5251clsss3 23083 . . . . . . . . 9 (((topGen‘𝑏) ∈ Top ∧ ran 𝑓 𝑏) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
5348, 27, 52syl2anc 584 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
54 ne0i 4347 . . . . . . . . . . . . . . . 16 (𝑥𝑦𝑦 ≠ ∅)
5554anim2i 617 . . . . . . . . . . . . . . 15 ((𝑦𝑏𝑥𝑦) → (𝑦𝑏𝑦 ≠ ∅))
5655, 9sylibr 234 . . . . . . . . . . . . . 14 ((𝑦𝑏𝑥𝑦) → 𝑦 ∈ (𝑏 ∖ {∅}))
57 fnfvelrn 7100 . . . . . . . . . . . . . . . . . 18 ((𝑓 Fn (𝑏 ∖ {∅}) ∧ 𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
5838, 57sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
59 inelcm 4471 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑦) ∈ 𝑦 ∧ (𝑓𝑦) ∈ ran 𝑓) → (𝑦 ∩ ran 𝑓) ≠ ∅)
6059expcom 413 . . . . . . . . . . . . . . . . 17 ((𝑓𝑦) ∈ ran 𝑓 → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6158, 60syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6261ex 412 . . . . . . . . . . . . . . 15 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (𝑦 ∈ (𝑏 ∖ {∅}) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6362a2d 29 . . . . . . . . . . . . . 14 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦 ∈ (𝑏 ∖ {∅}) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6456, 63syl7 74 . . . . . . . . . . . . 13 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → ((𝑦𝑏𝑥𝑦) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6564exp4a 431 . . . . . . . . . . . 12 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦𝑏 → (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))))
6665ralimdv2 3161 . . . . . . . . . . 11 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦 → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6766imp 406 . . . . . . . . . 10 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6867ad2antlr 727 . . . . . . . . 9 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
69 eqidd 2736 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (topGen‘𝑏) = (topGen‘𝑏))
7051a1i 11 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 = (topGen‘𝑏))
71 simplll 775 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 ∈ TopBases)
7227adantr 480 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ran 𝑓 𝑏)
73 simpr 484 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 𝑏)
7469, 70, 71, 72, 73elcls3 23107 . . . . . . . . 9 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓) ↔ ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
7568, 74mpbird 257 . . . . . . . 8 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓))
7653, 75eqelssd 4017 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)
77 breq1 5151 . . . . . . . . 9 (𝑥 = ran 𝑓 → (𝑥 ≼ ω ↔ ran 𝑓 ≼ ω))
78 fveqeq2 6916 . . . . . . . . 9 (𝑥 = ran 𝑓 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏))
7977, 78anbi12d 632 . . . . . . . 8 (𝑥 = ran 𝑓 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)))
8079rspcev 3622 . . . . . . 7 ((ran 𝑓 ∈ 𝒫 𝑏 ∧ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8131, 46, 76, 80syl12anc 837 . . . . . 6 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8225, 81exlimddv 1933 . . . . 5 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
83 unieq 4923 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
84 2ndcsep.1 . . . . . . . 8 𝑋 = 𝐽
8583, 51, 843eqtr4g 2800 . . . . . . 7 ((topGen‘𝑏) = 𝐽 𝑏 = 𝑋)
8685pweqd 4622 . . . . . 6 ((topGen‘𝑏) = 𝐽 → 𝒫 𝑏 = 𝒫 𝑋)
87 fveq2 6907 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → (cls‘(topGen‘𝑏)) = (cls‘𝐽))
8887fveq1d 6909 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → ((cls‘(topGen‘𝑏))‘𝑥) = ((cls‘𝐽)‘𝑥))
8988, 85eqeq12d 2751 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘𝐽)‘𝑥) = 𝑋))
9089anbi2d 630 . . . . . 6 ((topGen‘𝑏) = 𝐽 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9186, 90rexeqbidv 3345 . . . . 5 ((topGen‘𝑏) = 𝐽 → (∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9282, 91syl5ibcom 245 . . . 4 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9392impr 454 . . 3 ((𝑏 ∈ TopBases ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
9493rexlimiva 3145 . 2 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
951, 94sylbi 217 1 (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912   class class class wbr 5148  dom cdm 5689  ran crn 5690  Oncon0 6386   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  ωcom 7887  cdom 8982  cardccrd 9973  topGenctg 17484  Topctop 22915  TopBasesctb 22968  clsccl 23042  2ndωc2ndc 23462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-acn 9980  df-topgen 17490  df-top 22916  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-2ndc 23464
This theorem is referenced by:  met2ndc  24552
  Copyright terms: Public domain W3C validator