MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsep Structured version   Visualization version   GIF version

Theorem 2ndcsep 21671
Description: A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
2ndcsep.1 𝑋 = 𝐽
Assertion
Ref Expression
2ndcsep (𝐽 ∈ 2nd𝜔 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem 2ndcsep
Dummy variables 𝑓 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 21658 . 2 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
2 vex 3401 . . . . . . . . 9 𝑏 ∈ V
3 difss 3960 . . . . . . . . 9 (𝑏 ∖ {∅}) ⊆ 𝑏
4 ssdomg 8287 . . . . . . . . 9 (𝑏 ∈ V → ((𝑏 ∖ {∅}) ⊆ 𝑏 → (𝑏 ∖ {∅}) ≼ 𝑏))
52, 3, 4mp2 9 . . . . . . . 8 (𝑏 ∖ {∅}) ≼ 𝑏
6 simpr 479 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → 𝑏 ≼ ω)
7 domtr 8294 . . . . . . . 8 (((𝑏 ∖ {∅}) ≼ 𝑏𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
85, 6, 7sylancr 581 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
9 eldifsn 4550 . . . . . . . . 9 (𝑦 ∈ (𝑏 ∖ {∅}) ↔ (𝑦𝑏𝑦 ≠ ∅))
10 n0 4159 . . . . . . . . . 10 (𝑦 ≠ ∅ ↔ ∃𝑧 𝑧𝑦)
11 elunii 4676 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧 𝑏)
12 simpl 476 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧𝑦)
1311, 12jca 507 . . . . . . . . . . . . . 14 ((𝑧𝑦𝑦𝑏) → (𝑧 𝑏𝑧𝑦))
1413expcom 404 . . . . . . . . . . . . 13 (𝑦𝑏 → (𝑧𝑦 → (𝑧 𝑏𝑧𝑦)))
1514eximdv 1960 . . . . . . . . . . . 12 (𝑦𝑏 → (∃𝑧 𝑧𝑦 → ∃𝑧(𝑧 𝑏𝑧𝑦)))
1615imp 397 . . . . . . . . . . 11 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧(𝑧 𝑏𝑧𝑦))
17 df-rex 3096 . . . . . . . . . . 11 (∃𝑧 𝑏𝑧𝑦 ↔ ∃𝑧(𝑧 𝑏𝑧𝑦))
1816, 17sylibr 226 . . . . . . . . . 10 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧 𝑏𝑧𝑦)
1910, 18sylan2b 587 . . . . . . . . 9 ((𝑦𝑏𝑦 ≠ ∅) → ∃𝑧 𝑏𝑧𝑦)
209, 19sylbi 209 . . . . . . . 8 (𝑦 ∈ (𝑏 ∖ {∅}) → ∃𝑧 𝑏𝑧𝑦)
2120rgen 3104 . . . . . . 7 𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦
22 vuniex 7231 . . . . . . . 8 𝑏 ∈ V
23 eleq1 2847 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝑧𝑦 ↔ (𝑓𝑦) ∈ 𝑦))
2422, 23axcc4dom 9598 . . . . . . 7 (((𝑏 ∖ {∅}) ≼ ω ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
258, 21, 24sylancl 580 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
26 frn 6297 . . . . . . . . 9 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ran 𝑓 𝑏)
2726ad2antrl 718 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 𝑏)
28 vex 3401 . . . . . . . . . 10 𝑓 ∈ V
2928rnex 7379 . . . . . . . . 9 ran 𝑓 ∈ V
3029elpw 4385 . . . . . . . 8 (ran 𝑓 ∈ 𝒫 𝑏 ↔ ran 𝑓 𝑏)
3127, 30sylibr 226 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ∈ 𝒫 𝑏)
32 omelon 8840 . . . . . . . . . . 11 ω ∈ On
336adantr 474 . . . . . . . . . . 11 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ≼ ω)
34 ondomen 9193 . . . . . . . . . . 11 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
3532, 33, 34sylancr 581 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ∈ dom card)
36 ssnum 9195 . . . . . . . . . 10 ((𝑏 ∈ dom card ∧ (𝑏 ∖ {∅}) ⊆ 𝑏) → (𝑏 ∖ {∅}) ∈ dom card)
3735, 3, 36sylancl 580 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ∈ dom card)
38 ffn 6291 . . . . . . . . . . 11 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑓 Fn (𝑏 ∖ {∅}))
3938ad2antrl 718 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn (𝑏 ∖ {∅}))
40 dffn4 6372 . . . . . . . . . 10 (𝑓 Fn (𝑏 ∖ {∅}) ↔ 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
4139, 40sylib 210 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
42 fodomnum 9213 . . . . . . . . 9 ((𝑏 ∖ {∅}) ∈ dom card → (𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓 → ran 𝑓 ≼ (𝑏 ∖ {∅})))
4337, 41, 42sylc 65 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ (𝑏 ∖ {∅}))
448adantr 474 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ≼ ω)
45 domtr 8294 . . . . . . . 8 ((ran 𝑓 ≼ (𝑏 ∖ {∅}) ∧ (𝑏 ∖ {∅}) ≼ ω) → ran 𝑓 ≼ ω)
4643, 44, 45syl2anc 579 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ ω)
47 tgcl 21181 . . . . . . . . . 10 (𝑏 ∈ TopBases → (topGen‘𝑏) ∈ Top)
4847ad2antrr 716 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (topGen‘𝑏) ∈ Top)
49 unitg 21179 . . . . . . . . . . . 12 (𝑏 ∈ V → (topGen‘𝑏) = 𝑏)
502, 49ax-mp 5 . . . . . . . . . . 11 (topGen‘𝑏) = 𝑏
5150eqcomi 2787 . . . . . . . . . 10 𝑏 = (topGen‘𝑏)
5251clsss3 21271 . . . . . . . . 9 (((topGen‘𝑏) ∈ Top ∧ ran 𝑓 𝑏) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
5348, 27, 52syl2anc 579 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
54 ne0i 4149 . . . . . . . . . . . . . . . 16 (𝑥𝑦𝑦 ≠ ∅)
5554anim2i 610 . . . . . . . . . . . . . . 15 ((𝑦𝑏𝑥𝑦) → (𝑦𝑏𝑦 ≠ ∅))
5655, 9sylibr 226 . . . . . . . . . . . . . 14 ((𝑦𝑏𝑥𝑦) → 𝑦 ∈ (𝑏 ∖ {∅}))
57 fnfvelrn 6620 . . . . . . . . . . . . . . . . . 18 ((𝑓 Fn (𝑏 ∖ {∅}) ∧ 𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
5838, 57sylan 575 . . . . . . . . . . . . . . . . 17 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
59 inelcm 4257 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑦) ∈ 𝑦 ∧ (𝑓𝑦) ∈ ran 𝑓) → (𝑦 ∩ ran 𝑓) ≠ ∅)
6059expcom 404 . . . . . . . . . . . . . . . . 17 ((𝑓𝑦) ∈ ran 𝑓 → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6158, 60syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6261ex 403 . . . . . . . . . . . . . . 15 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (𝑦 ∈ (𝑏 ∖ {∅}) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6362a2d 29 . . . . . . . . . . . . . 14 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦 ∈ (𝑏 ∖ {∅}) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6456, 63syl7 74 . . . . . . . . . . . . 13 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → ((𝑦𝑏𝑥𝑦) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6564exp4a 424 . . . . . . . . . . . 12 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦𝑏 → (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))))
6665ralimdv2 3143 . . . . . . . . . . 11 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦 → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6766imp 397 . . . . . . . . . 10 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6867ad2antlr 717 . . . . . . . . 9 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
69 eqidd 2779 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (topGen‘𝑏) = (topGen‘𝑏))
7051a1i 11 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 = (topGen‘𝑏))
71 simplll 765 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 ∈ TopBases)
7227adantr 474 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ran 𝑓 𝑏)
73 simpr 479 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 𝑏)
7469, 70, 71, 72, 73elcls3 21295 . . . . . . . . 9 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓) ↔ ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
7568, 74mpbird 249 . . . . . . . 8 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓))
7653, 75eqelssd 3841 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)
77 breq1 4889 . . . . . . . . 9 (𝑥 = ran 𝑓 → (𝑥 ≼ ω ↔ ran 𝑓 ≼ ω))
78 fveqeq2 6455 . . . . . . . . 9 (𝑥 = ran 𝑓 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏))
7977, 78anbi12d 624 . . . . . . . 8 (𝑥 = ran 𝑓 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)))
8079rspcev 3511 . . . . . . 7 ((ran 𝑓 ∈ 𝒫 𝑏 ∧ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8131, 46, 76, 80syl12anc 827 . . . . . 6 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8225, 81exlimddv 1978 . . . . 5 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
83 unieq 4679 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
84 2ndcsep.1 . . . . . . . 8 𝑋 = 𝐽
8583, 51, 843eqtr4g 2839 . . . . . . 7 ((topGen‘𝑏) = 𝐽 𝑏 = 𝑋)
8685pweqd 4384 . . . . . 6 ((topGen‘𝑏) = 𝐽 → 𝒫 𝑏 = 𝒫 𝑋)
87 fveq2 6446 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → (cls‘(topGen‘𝑏)) = (cls‘𝐽))
8887fveq1d 6448 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → ((cls‘(topGen‘𝑏))‘𝑥) = ((cls‘𝐽)‘𝑥))
8988, 85eqeq12d 2793 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘𝐽)‘𝑥) = 𝑋))
9089anbi2d 622 . . . . . 6 ((topGen‘𝑏) = 𝐽 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9186, 90rexeqbidv 3327 . . . . 5 ((topGen‘𝑏) = 𝐽 → (∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9282, 91syl5ibcom 237 . . . 4 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9392impr 448 . . 3 ((𝑏 ∈ TopBases ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
9493rexlimiva 3210 . 2 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
951, 94sylbi 209 1 (𝐽 ∈ 2nd𝜔 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wex 1823  wcel 2107  wne 2969  wral 3090  wrex 3091  Vcvv 3398  cdif 3789  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398   cuni 4671   class class class wbr 4886  dom cdm 5355  ran crn 5356  Oncon0 5976   Fn wfn 6130  wf 6131  ontowfo 6133  cfv 6135  ωcom 7343  cdom 8239  cardccrd 9094  topGenctg 16484  Topctop 21105  TopBasesctb 21157  clsccl 21230  2nd𝜔c2ndc 21650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-acn 9101  df-topgen 16490  df-top 21106  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-2ndc 21652
This theorem is referenced by:  met2ndc  22736
  Copyright terms: Public domain W3C validator