MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsep Structured version   Visualization version   GIF version

Theorem 2ndcsep 22064
Description: A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
2ndcsep.1 𝑋 = 𝐽
Assertion
Ref Expression
2ndcsep (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem 2ndcsep
Dummy variables 𝑓 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 22051 . 2 (𝐽 ∈ 2ndω ↔ ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽))
2 vex 3444 . . . . . . . . 9 𝑏 ∈ V
3 difss 4059 . . . . . . . . 9 (𝑏 ∖ {∅}) ⊆ 𝑏
4 ssdomg 8538 . . . . . . . . 9 (𝑏 ∈ V → ((𝑏 ∖ {∅}) ⊆ 𝑏 → (𝑏 ∖ {∅}) ≼ 𝑏))
52, 3, 4mp2 9 . . . . . . . 8 (𝑏 ∖ {∅}) ≼ 𝑏
6 simpr 488 . . . . . . . 8 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → 𝑏 ≼ ω)
7 domtr 8545 . . . . . . . 8 (((𝑏 ∖ {∅}) ≼ 𝑏𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
85, 6, 7sylancr 590 . . . . . . 7 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → (𝑏 ∖ {∅}) ≼ ω)
9 eldifsn 4680 . . . . . . . . 9 (𝑦 ∈ (𝑏 ∖ {∅}) ↔ (𝑦𝑏𝑦 ≠ ∅))
10 n0 4260 . . . . . . . . . 10 (𝑦 ≠ ∅ ↔ ∃𝑧 𝑧𝑦)
11 elunii 4805 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧 𝑏)
12 simpl 486 . . . . . . . . . . . . . . 15 ((𝑧𝑦𝑦𝑏) → 𝑧𝑦)
1311, 12jca 515 . . . . . . . . . . . . . 14 ((𝑧𝑦𝑦𝑏) → (𝑧 𝑏𝑧𝑦))
1413expcom 417 . . . . . . . . . . . . 13 (𝑦𝑏 → (𝑧𝑦 → (𝑧 𝑏𝑧𝑦)))
1514eximdv 1918 . . . . . . . . . . . 12 (𝑦𝑏 → (∃𝑧 𝑧𝑦 → ∃𝑧(𝑧 𝑏𝑧𝑦)))
1615imp 410 . . . . . . . . . . 11 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧(𝑧 𝑏𝑧𝑦))
17 df-rex 3112 . . . . . . . . . . 11 (∃𝑧 𝑏𝑧𝑦 ↔ ∃𝑧(𝑧 𝑏𝑧𝑦))
1816, 17sylibr 237 . . . . . . . . . 10 ((𝑦𝑏 ∧ ∃𝑧 𝑧𝑦) → ∃𝑧 𝑏𝑧𝑦)
1910, 18sylan2b 596 . . . . . . . . 9 ((𝑦𝑏𝑦 ≠ ∅) → ∃𝑧 𝑏𝑧𝑦)
209, 19sylbi 220 . . . . . . . 8 (𝑦 ∈ (𝑏 ∖ {∅}) → ∃𝑧 𝑏𝑧𝑦)
2120rgen 3116 . . . . . . 7 𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦
22 vuniex 7445 . . . . . . . 8 𝑏 ∈ V
23 eleq1 2877 . . . . . . . 8 (𝑧 = (𝑓𝑦) → (𝑧𝑦 ↔ (𝑓𝑦) ∈ 𝑦))
2422, 23axcc4dom 9852 . . . . . . 7 (((𝑏 ∖ {∅}) ≼ ω ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})∃𝑧 𝑏𝑧𝑦) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
258, 21, 24sylancl 589 . . . . . 6 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑓(𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦))
26 frn 6493 . . . . . . . . 9 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ran 𝑓 𝑏)
2726ad2antrl 727 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 𝑏)
28 vex 3444 . . . . . . . . . 10 𝑓 ∈ V
2928rnex 7599 . . . . . . . . 9 ran 𝑓 ∈ V
3029elpw 4501 . . . . . . . 8 (ran 𝑓 ∈ 𝒫 𝑏 ↔ ran 𝑓 𝑏)
3127, 30sylibr 237 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ∈ 𝒫 𝑏)
32 omelon 9093 . . . . . . . . . . 11 ω ∈ On
336adantr 484 . . . . . . . . . . 11 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ≼ ω)
34 ondomen 9448 . . . . . . . . . . 11 ((ω ∈ On ∧ 𝑏 ≼ ω) → 𝑏 ∈ dom card)
3532, 33, 34sylancr 590 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑏 ∈ dom card)
36 ssnum 9450 . . . . . . . . . 10 ((𝑏 ∈ dom card ∧ (𝑏 ∖ {∅}) ⊆ 𝑏) → (𝑏 ∖ {∅}) ∈ dom card)
3735, 3, 36sylancl 589 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ∈ dom card)
38 ffn 6487 . . . . . . . . . . 11 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑓 Fn (𝑏 ∖ {∅}))
3938ad2antrl 727 . . . . . . . . . 10 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn (𝑏 ∖ {∅}))
40 dffn4 6571 . . . . . . . . . 10 (𝑓 Fn (𝑏 ∖ {∅}) ↔ 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
4139, 40sylib 221 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → 𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓)
42 fodomnum 9468 . . . . . . . . 9 ((𝑏 ∖ {∅}) ∈ dom card → (𝑓:(𝑏 ∖ {∅})–onto→ran 𝑓 → ran 𝑓 ≼ (𝑏 ∖ {∅})))
4337, 41, 42sylc 65 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ (𝑏 ∖ {∅}))
448adantr 484 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (𝑏 ∖ {∅}) ≼ ω)
45 domtr 8545 . . . . . . . 8 ((ran 𝑓 ≼ (𝑏 ∖ {∅}) ∧ (𝑏 ∖ {∅}) ≼ ω) → ran 𝑓 ≼ ω)
4643, 44, 45syl2anc 587 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ran 𝑓 ≼ ω)
47 tgcl 21574 . . . . . . . . . 10 (𝑏 ∈ TopBases → (topGen‘𝑏) ∈ Top)
4847ad2antrr 725 . . . . . . . . 9 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → (topGen‘𝑏) ∈ Top)
49 unitg 21572 . . . . . . . . . . . 12 (𝑏 ∈ V → (topGen‘𝑏) = 𝑏)
5049elv 3446 . . . . . . . . . . 11 (topGen‘𝑏) = 𝑏
5150eqcomi 2807 . . . . . . . . . 10 𝑏 = (topGen‘𝑏)
5251clsss3 21664 . . . . . . . . 9 (((topGen‘𝑏) ∈ Top ∧ ran 𝑓 𝑏) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
5348, 27, 52syl2anc 587 . . . . . . . 8 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) ⊆ 𝑏)
54 ne0i 4250 . . . . . . . . . . . . . . . 16 (𝑥𝑦𝑦 ≠ ∅)
5554anim2i 619 . . . . . . . . . . . . . . 15 ((𝑦𝑏𝑥𝑦) → (𝑦𝑏𝑦 ≠ ∅))
5655, 9sylibr 237 . . . . . . . . . . . . . 14 ((𝑦𝑏𝑥𝑦) → 𝑦 ∈ (𝑏 ∖ {∅}))
57 fnfvelrn 6825 . . . . . . . . . . . . . . . . . 18 ((𝑓 Fn (𝑏 ∖ {∅}) ∧ 𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
5838, 57sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → (𝑓𝑦) ∈ ran 𝑓)
59 inelcm 4372 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑦) ∈ 𝑦 ∧ (𝑓𝑦) ∈ ran 𝑓) → (𝑦 ∩ ran 𝑓) ≠ ∅)
6059expcom 417 . . . . . . . . . . . . . . . . 17 ((𝑓𝑦) ∈ ran 𝑓 → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6158, 60syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏𝑦 ∈ (𝑏 ∖ {∅})) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6261ex 416 . . . . . . . . . . . . . . 15 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (𝑦 ∈ (𝑏 ∖ {∅}) → ((𝑓𝑦) ∈ 𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6362a2d 29 . . . . . . . . . . . . . 14 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦 ∈ (𝑏 ∖ {∅}) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6456, 63syl7 74 . . . . . . . . . . . . 13 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → ((𝑦𝑏𝑥𝑦) → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6564exp4a 435 . . . . . . . . . . . 12 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → ((𝑦 ∈ (𝑏 ∖ {∅}) → (𝑓𝑦) ∈ 𝑦) → (𝑦𝑏 → (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))))
6665ralimdv2 3143 . . . . . . . . . . 11 (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 → (∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦 → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
6766imp 410 . . . . . . . . . 10 ((𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
6867ad2antlr 726 . . . . . . . . 9 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅))
69 eqidd 2799 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (topGen‘𝑏) = (topGen‘𝑏))
7051a1i 11 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 = (topGen‘𝑏))
71 simplll 774 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑏 ∈ TopBases)
7227adantr 484 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → ran 𝑓 𝑏)
73 simpr 488 . . . . . . . . . 10 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 𝑏)
7469, 70, 71, 72, 73elcls3 21688 . . . . . . . . 9 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → (𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓) ↔ ∀𝑦𝑏 (𝑥𝑦 → (𝑦 ∩ ran 𝑓) ≠ ∅)))
7568, 74mpbird 260 . . . . . . . 8 ((((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) ∧ 𝑥 𝑏) → 𝑥 ∈ ((cls‘(topGen‘𝑏))‘ran 𝑓))
7653, 75eqelssd 3936 . . . . . . 7 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)
77 breq1 5033 . . . . . . . . 9 (𝑥 = ran 𝑓 → (𝑥 ≼ ω ↔ ran 𝑓 ≼ ω))
78 fveqeq2 6654 . . . . . . . . 9 (𝑥 = ran 𝑓 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏))
7977, 78anbi12d 633 . . . . . . . 8 (𝑥 = ran 𝑓 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)))
8079rspcev 3571 . . . . . . 7 ((ran 𝑓 ∈ 𝒫 𝑏 ∧ (ran 𝑓 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘ran 𝑓) = 𝑏)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8131, 46, 76, 80syl12anc 835 . . . . . 6 (((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) ∧ (𝑓:(𝑏 ∖ {∅})⟶ 𝑏 ∧ ∀𝑦 ∈ (𝑏 ∖ {∅})(𝑓𝑦) ∈ 𝑦)) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
8225, 81exlimddv 1936 . . . . 5 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏))
83 unieq 4811 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 (topGen‘𝑏) = 𝐽)
84 2ndcsep.1 . . . . . . . 8 𝑋 = 𝐽
8583, 51, 843eqtr4g 2858 . . . . . . 7 ((topGen‘𝑏) = 𝐽 𝑏 = 𝑋)
8685pweqd 4516 . . . . . 6 ((topGen‘𝑏) = 𝐽 → 𝒫 𝑏 = 𝒫 𝑋)
87 fveq2 6645 . . . . . . . . 9 ((topGen‘𝑏) = 𝐽 → (cls‘(topGen‘𝑏)) = (cls‘𝐽))
8887fveq1d 6647 . . . . . . . 8 ((topGen‘𝑏) = 𝐽 → ((cls‘(topGen‘𝑏))‘𝑥) = ((cls‘𝐽)‘𝑥))
8988, 85eqeq12d 2814 . . . . . . 7 ((topGen‘𝑏) = 𝐽 → (((cls‘(topGen‘𝑏))‘𝑥) = 𝑏 ↔ ((cls‘𝐽)‘𝑥) = 𝑋))
9089anbi2d 631 . . . . . 6 ((topGen‘𝑏) = 𝐽 → ((𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9186, 90rexeqbidv 3355 . . . . 5 ((topGen‘𝑏) = 𝐽 → (∃𝑥 ∈ 𝒫 𝑏(𝑥 ≼ ω ∧ ((cls‘(topGen‘𝑏))‘𝑥) = 𝑏) ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9282, 91syl5ibcom 248 . . . 4 ((𝑏 ∈ TopBases ∧ 𝑏 ≼ ω) → ((topGen‘𝑏) = 𝐽 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
9392impr 458 . . 3 ((𝑏 ∈ TopBases ∧ (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽)) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
9493rexlimiva 3240 . 2 (∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ (topGen‘𝑏) = 𝐽) → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
951, 94sylbi 220 1 (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   cuni 4800   class class class wbr 5030  dom cdm 5519  ran crn 5520  Oncon0 6159   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  ωcom 7560  cdom 8490  cardccrd 9348  topGenctg 16703  Topctop 21498  TopBasesctb 21550  clsccl 21623  2ndωc2ndc 22043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-acn 9355  df-topgen 16709  df-top 21499  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-2ndc 22045
This theorem is referenced by:  met2ndc  23130
  Copyright terms: Public domain W3C validator