MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnouttr Structured version   Visualization version   GIF version

Theorem tgbtwnouttr 28016
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwnintr.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwnintr.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwnintr.3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnintr.4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgbtwnouttr.1 (πœ‘ β†’ 𝐡 β‰  𝐢)
tgbtwnouttr.2 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
tgbtwnouttr.3 (πœ‘ β†’ 𝐢 ∈ (𝐡𝐼𝐷))
Assertion
Ref Expression
tgbtwnouttr (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnouttr
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . 2 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . 2 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . 2 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tgbtwnintr.4 . 2 (πœ‘ β†’ 𝐷 ∈ 𝑃)
6 tgbtwnintr.2 . 2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
7 tgbtwnintr.1 . 2 (πœ‘ β†’ 𝐴 ∈ 𝑃)
8 tgbtwnintr.3 . . 3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
9 tgbtwnouttr.1 . . . 4 (πœ‘ β†’ 𝐡 β‰  𝐢)
109necomd 2995 . . 3 (πœ‘ β†’ 𝐢 β‰  𝐡)
11 tgbtwnouttr.3 . . . 4 (πœ‘ β†’ 𝐢 ∈ (𝐡𝐼𝐷))
121, 2, 3, 4, 6, 8, 5, 11tgbtwncom 28007 . . 3 (πœ‘ β†’ 𝐢 ∈ (𝐷𝐼𝐡))
13 tgbtwnouttr.2 . . . 4 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
141, 2, 3, 4, 7, 6, 8, 13tgbtwncom 28007 . . 3 (πœ‘ β†’ 𝐡 ∈ (𝐢𝐼𝐴))
151, 2, 3, 4, 5, 8, 6, 7, 10, 12, 14tgbtwnouttr2 28014 . 2 (πœ‘ β†’ 𝐡 ∈ (𝐷𝐼𝐴))
161, 2, 3, 4, 5, 6, 7, 15tgbtwncom 28007 1 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  Itvcitv 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415  df-trkgc 27967  df-trkgb 27968  df-trkgcb 27969  df-trkg 27972
This theorem is referenced by:  btwnhl  28133  tglineeltr  28150  outpasch  28274
  Copyright terms: Public domain W3C validator