| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnouttr | Structured version Visualization version GIF version | ||
| Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnouttr.1 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| tgbtwnouttr.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| tgbtwnouttr.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| Ref | Expression |
|---|---|
| tgbtwnouttr | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgbtwnintr.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 6 | tgbtwnintr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | tgbtwnintr.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | tgbtwnintr.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | tgbtwnouttr.1 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 10 | 9 | necomd 2980 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 11 | tgbtwnouttr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) | |
| 12 | 1, 2, 3, 4, 6, 8, 5, 11 | tgbtwncom 28469 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐷𝐼𝐵)) |
| 13 | tgbtwnouttr.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 14 | 1, 2, 3, 4, 7, 6, 8, 13 | tgbtwncom 28469 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 15 | 1, 2, 3, 4, 5, 8, 6, 7, 10, 12, 14 | tgbtwnouttr2 28476 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐷𝐼𝐴)) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 15 | tgbtwncom 28469 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 distcds 17206 TarskiGcstrkg 28408 Itvcitv 28414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 |
| This theorem is referenced by: btwnhl 28595 tglineeltr 28612 outpasch 28736 |
| Copyright terms: Public domain | W3C validator |