MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnouttr Structured version   Visualization version   GIF version

Theorem tgbtwnouttr 28430
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnouttr.1 (𝜑𝐵𝐶)
tgbtwnouttr.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnouttr.3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnouttr (𝜑𝐵 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnouttr
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
6 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
7 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
8 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
9 tgbtwnouttr.1 . . . 4 (𝜑𝐵𝐶)
109necomd 2981 . . 3 (𝜑𝐶𝐵)
11 tgbtwnouttr.3 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
121, 2, 3, 4, 6, 8, 5, 11tgbtwncom 28421 . . 3 (𝜑𝐶 ∈ (𝐷𝐼𝐵))
13 tgbtwnouttr.2 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
141, 2, 3, 4, 7, 6, 8, 13tgbtwncom 28421 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
151, 2, 3, 4, 5, 8, 6, 7, 10, 12, 14tgbtwnouttr2 28428 . 2 (𝜑𝐵 ∈ (𝐷𝐼𝐴))
161, 2, 3, 4, 5, 6, 7, 15tgbtwncom 28421 1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  cfv 6513  (class class class)co 7389  Basecbs 17185  distcds 17235  TarskiGcstrkg 28360  Itvcitv 28366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-trkgc 28381  df-trkgb 28382  df-trkgcb 28383  df-trkg 28386
This theorem is referenced by:  btwnhl  28547  tglineeltr  28564  outpasch  28688
  Copyright terms: Public domain W3C validator