MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnouttr Structured version   Visualization version   GIF version

Theorem tgbtwnouttr 28441
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnouttr.1 (𝜑𝐵𝐶)
tgbtwnouttr.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnouttr.3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnouttr (𝜑𝐵 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnouttr
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
6 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
7 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
8 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
9 tgbtwnouttr.1 . . . 4 (𝜑𝐵𝐶)
109necomd 2986 . . 3 (𝜑𝐶𝐵)
11 tgbtwnouttr.3 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
121, 2, 3, 4, 6, 8, 5, 11tgbtwncom 28432 . . 3 (𝜑𝐶 ∈ (𝐷𝐼𝐵))
13 tgbtwnouttr.2 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
141, 2, 3, 4, 7, 6, 8, 13tgbtwncom 28432 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
151, 2, 3, 4, 5, 8, 6, 7, 10, 12, 14tgbtwnouttr2 28439 . 2 (𝜑𝐵 ∈ (𝐷𝐼𝐴))
161, 2, 3, 4, 5, 6, 7, 15tgbtwncom 28432 1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2931  cfv 6541  (class class class)co 7413  Basecbs 17229  distcds 17282  TarskiGcstrkg 28371  Itvcitv 28377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-trkgc 28392  df-trkgb 28393  df-trkgcb 28394  df-trkg 28397
This theorem is referenced by:  btwnhl  28558  tglineeltr  28575  outpasch  28699
  Copyright terms: Public domain W3C validator