Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnouttr | Structured version Visualization version GIF version |
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnouttr.1 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
tgbtwnouttr.2 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
tgbtwnouttr.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnouttr | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgbtwnintr.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
6 | tgbtwnintr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | tgbtwnintr.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | tgbtwnintr.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
9 | tgbtwnouttr.1 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
10 | 9 | necomd 2996 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
11 | tgbtwnouttr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) | |
12 | 1, 2, 3, 4, 6, 8, 5, 11 | tgbtwncom 26579 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐷𝐼𝐵)) |
13 | tgbtwnouttr.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
14 | 1, 2, 3, 4, 7, 6, 8, 13 | tgbtwncom 26579 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
15 | 1, 2, 3, 4, 5, 8, 6, 7, 10, 12, 14 | tgbtwnouttr2 26586 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐷𝐼𝐴)) |
16 | 1, 2, 3, 4, 5, 6, 7, 15 | tgbtwncom 26579 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 distcds 16811 TarskiGcstrkg 26521 Itvcitv 26527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-trkgc 26539 df-trkgb 26540 df-trkgcb 26541 df-trkg 26544 |
This theorem is referenced by: btwnhl 26705 tglineeltr 26722 outpasch 26846 |
Copyright terms: Public domain | W3C validator |