MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnouttr Structured version   Visualization version   GIF version

Theorem tgbtwnouttr 28531
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnouttr.1 (𝜑𝐵𝐶)
tgbtwnouttr.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnouttr.3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnouttr (𝜑𝐵 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnouttr
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
6 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
7 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
8 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
9 tgbtwnouttr.1 . . . 4 (𝜑𝐵𝐶)
109necomd 2996 . . 3 (𝜑𝐶𝐵)
11 tgbtwnouttr.3 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
121, 2, 3, 4, 6, 8, 5, 11tgbtwncom 28522 . . 3 (𝜑𝐶 ∈ (𝐷𝐼𝐵))
13 tgbtwnouttr.2 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
141, 2, 3, 4, 7, 6, 8, 13tgbtwncom 28522 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
151, 2, 3, 4, 5, 8, 6, 7, 10, 12, 14tgbtwnouttr2 28529 . 2 (𝜑𝐵 ∈ (𝐷𝐼𝐴))
161, 2, 3, 4, 5, 6, 7, 15tgbtwncom 28522 1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2940  cfv 6569  (class class class)co 7438  Basecbs 17254  distcds 17316  TarskiGcstrkg 28461  Itvcitv 28467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441  df-trkgc 28482  df-trkgb 28483  df-trkgcb 28484  df-trkg 28487
This theorem is referenced by:  btwnhl  28648  tglineeltr  28665  outpasch  28789
  Copyright terms: Public domain W3C validator