MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineeltr Structured version   Visualization version   GIF version

Theorem tglineeltr 28657
Description: Transitivity law for lines, one half of tglineelsb2 28658. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
tglineelsb2.3 (𝜑𝑆𝐵)
tglineelsb2.5 (𝜑𝑆𝑃)
tglineelsb2.6 (𝜑𝑆 ∈ (𝑃𝐿𝑄))
tglineeltr.7 (𝜑𝑅𝐵)
tglineeltr.8 (𝜑𝑅 ∈ (𝑃𝐿𝑆))
Assertion
Ref Expression
tglineeltr (𝜑𝑅 ∈ (𝑃𝐿𝑄))

Proof of Theorem tglineeltr
StepHypRef Expression
1 tglineeltr.7 . . . 4 (𝜑𝑅𝐵)
2 tglineelsb2.p . . . . . . 7 𝐵 = (Base‘𝐺)
3 tglineelsb2.l . . . . . . 7 𝐿 = (LineG‘𝐺)
4 tglineelsb2.i . . . . . . 7 𝐼 = (Itv‘𝐺)
5 tglineelsb2.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
65ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝐺 ∈ TarskiG)
7 tglineelsb2.1 . . . . . . . 8 (𝜑𝑃𝐵)
87ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑃𝐵)
9 tglineelsb2.2 . . . . . . . 8 (𝜑𝑄𝐵)
109ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑄𝐵)
11 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑅𝐵)
12 eqid 2740 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
13 tglineelsb2.3 . . . . . . . . 9 (𝜑𝑆𝐵)
1413ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑆𝐵)
15 simplr 768 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑅 ∈ (𝑃𝐼𝑆))
16 simpr 484 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑆 ∈ (𝑃𝐼𝑄))
172, 12, 4, 6, 8, 11, 14, 10, 15, 16tgbtwnexch 28524 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑅 ∈ (𝑃𝐼𝑄))
182, 3, 4, 6, 8, 10, 11, 17btwncolg1 28581 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
195ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝐺 ∈ TarskiG)
207ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃𝐵)
219ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑄𝐵)
22 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑅𝐵)
2313ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑆𝐵)
24 simplr 768 . . . . . . . . 9 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑅 ∈ (𝑃𝐼𝑆))
252, 12, 4, 19, 20, 22, 23, 24tgbtwncom 28514 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑅 ∈ (𝑆𝐼𝑃))
26 simpr 484 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃 ∈ (𝑆𝐼𝑄))
272, 12, 4, 19, 23, 22, 20, 21, 25, 26tgbtwnexch3 28520 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃 ∈ (𝑅𝐼𝑄))
282, 3, 4, 19, 20, 21, 22, 27btwncolg2 28582 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
295ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝐺 ∈ TarskiG)
307ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑃𝐵)
31 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑅𝐵)
329ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑄𝐵)
3313ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑆𝐵)
34 simplr 768 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑅 ∈ (𝑃𝐼𝑆))
35 simpr 484 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑄 ∈ (𝑃𝐼𝑆))
362, 4, 29, 30, 31, 32, 33, 34, 35, 3tgbtwnconnln3 28604 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
37 tglineelsb2.6 . . . . . . . 8 (𝜑𝑆 ∈ (𝑃𝐿𝑄))
38 tglineelsb2.4 . . . . . . . . 9 (𝜑𝑃𝑄)
392, 3, 4, 5, 7, 9, 38, 13tgellng 28579 . . . . . . . 8 (𝜑 → (𝑆 ∈ (𝑃𝐿𝑄) ↔ (𝑆 ∈ (𝑃𝐼𝑄) ∨ 𝑃 ∈ (𝑆𝐼𝑄) ∨ 𝑄 ∈ (𝑃𝐼𝑆))))
4037, 39mpbid 232 . . . . . . 7 (𝜑 → (𝑆 ∈ (𝑃𝐼𝑄) ∨ 𝑃 ∈ (𝑆𝐼𝑄) ∨ 𝑄 ∈ (𝑃𝐼𝑆)))
4140ad2antrr 725 . . . . . 6 (((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) → (𝑆 ∈ (𝑃𝐼𝑄) ∨ 𝑃 ∈ (𝑆𝐼𝑄) ∨ 𝑄 ∈ (𝑃𝐼𝑆)))
4218, 28, 36, 41mpjao3dan 1432 . . . . 5 (((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐼𝑆)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
4342an32s 651 . . . 4 (((𝜑𝑅 ∈ (𝑃𝐼𝑆)) ∧ 𝑅𝐵) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
441, 43mpidan 688 . . 3 ((𝜑𝑅 ∈ (𝑃𝐼𝑆)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
455ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝐺 ∈ TarskiG)
467ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑃𝐵)
479ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑄𝐵)
48 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑅𝐵)
4913ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑆𝐵)
50 tglineelsb2.5 . . . . . . . . . 10 (𝜑𝑆𝑃)
5150necomd 3002 . . . . . . . . 9 (𝜑𝑃𝑆)
5251ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑃𝑆)
53 simplr 768 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑃 ∈ (𝑅𝐼𝑆))
54 simpr 484 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑆 ∈ (𝑃𝐼𝑄))
552, 12, 4, 45, 48, 46, 49, 47, 52, 53, 54tgbtwnouttr 28523 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑃 ∈ (𝑅𝐼𝑄))
562, 3, 4, 45, 46, 47, 48, 55btwncolg2 28582 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
575ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝐺 ∈ TarskiG)
589ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑄𝐵)
59 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑅𝐵)
607ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃𝐵)
6113ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑆𝐵)
6250ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑆𝑃)
63 simpr 484 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃 ∈ (𝑆𝐼𝑄))
64 simplr 768 . . . . . . . . 9 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃 ∈ (𝑅𝐼𝑆))
652, 12, 4, 57, 59, 60, 61, 64tgbtwncom 28514 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃 ∈ (𝑆𝐼𝑅))
662, 4, 57, 61, 60, 58, 59, 3, 62, 63, 65tgbtwnconnln2 28607 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → (𝑃 ∈ (𝑄𝐿𝑅) ∨ 𝑄 = 𝑅))
672, 3, 4, 57, 58, 59, 60, 66colrot2 28586 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
685ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝐺 ∈ TarskiG)
699ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑄𝐵)
707ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑃𝐵)
71 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑅𝐵)
7213ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑆𝐵)
73 simpr 484 . . . . . . . . 9 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑄 ∈ (𝑃𝐼𝑆))
74 simplr 768 . . . . . . . . 9 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑃 ∈ (𝑅𝐼𝑆))
752, 12, 4, 68, 69, 70, 71, 72, 73, 74tgbtwnintr 28519 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑃 ∈ (𝑄𝐼𝑅))
762, 3, 4, 68, 69, 70, 71, 75btwncolg3 28583 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → (𝑅 ∈ (𝑄𝐿𝑃) ∨ 𝑄 = 𝑃))
772, 3, 4, 68, 69, 70, 71, 76colcom 28584 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
7840ad2antrr 725 . . . . . 6 (((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) → (𝑆 ∈ (𝑃𝐼𝑄) ∨ 𝑃 ∈ (𝑆𝐼𝑄) ∨ 𝑄 ∈ (𝑃𝐼𝑆)))
7956, 67, 77, 78mpjao3dan 1432 . . . . 5 (((𝜑𝑅𝐵) ∧ 𝑃 ∈ (𝑅𝐼𝑆)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
8079an32s 651 . . . 4 (((𝜑𝑃 ∈ (𝑅𝐼𝑆)) ∧ 𝑅𝐵) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
811, 80mpidan 688 . . 3 ((𝜑𝑃 ∈ (𝑅𝐼𝑆)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
825ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝐺 ∈ TarskiG)
839ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑄𝐵)
84 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑅𝐵)
857ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑃𝐵)
8613ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑆𝐵)
8751ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑃𝑆)
88 simpr 484 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑆 ∈ (𝑃𝐼𝑄))
89 simplr 768 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → 𝑆 ∈ (𝑃𝐼𝑅))
902, 4, 82, 85, 86, 83, 84, 3, 87, 88, 89tgbtwnconnln1 28606 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → (𝑃 ∈ (𝑄𝐿𝑅) ∨ 𝑄 = 𝑅))
912, 3, 4, 82, 83, 84, 85, 90colrot2 28586 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑆 ∈ (𝑃𝐼𝑄)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
925ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝐺 ∈ TarskiG)
937ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃𝐵)
949ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑄𝐵)
95 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑅𝐵)
9613ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑆𝐵)
9750ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑆𝑃)
98 simplr 768 . . . . . . . . 9 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑆 ∈ (𝑃𝐼𝑅))
992, 12, 4, 92, 93, 96, 95, 98tgbtwncom 28514 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑆 ∈ (𝑅𝐼𝑃))
100 simpr 484 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃 ∈ (𝑆𝐼𝑄))
1012, 12, 4, 92, 95, 96, 93, 94, 97, 99, 100tgbtwnouttr2 28521 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → 𝑃 ∈ (𝑅𝐼𝑄))
1022, 3, 4, 92, 93, 94, 95, 101btwncolg2 28582 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑃 ∈ (𝑆𝐼𝑄)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
1035ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝐺 ∈ TarskiG)
1047ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑃𝐵)
1059ad3antrrr 729 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑄𝐵)
106 simpllr 775 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑅𝐵)
10713ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑆𝐵)
108 simpr 484 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑄 ∈ (𝑃𝐼𝑆))
109 simplr 768 . . . . . . . 8 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑆 ∈ (𝑃𝐼𝑅))
1102, 12, 4, 103, 104, 105, 107, 106, 108, 109tgbtwnexch 28524 . . . . . . 7 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → 𝑄 ∈ (𝑃𝐼𝑅))
1112, 3, 4, 103, 104, 105, 106, 110btwncolg3 28583 . . . . . 6 ((((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑄 ∈ (𝑃𝐼𝑆)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
11240ad2antrr 725 . . . . . 6 (((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) → (𝑆 ∈ (𝑃𝐼𝑄) ∨ 𝑃 ∈ (𝑆𝐼𝑄) ∨ 𝑄 ∈ (𝑃𝐼𝑆)))
11391, 102, 111, 112mpjao3dan 1432 . . . . 5 (((𝜑𝑅𝐵) ∧ 𝑆 ∈ (𝑃𝐼𝑅)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
114113an32s 651 . . . 4 (((𝜑𝑆 ∈ (𝑃𝐼𝑅)) ∧ 𝑅𝐵) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
1151, 114mpidan 688 . . 3 ((𝜑𝑆 ∈ (𝑃𝐼𝑅)) → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
116 id 22 . . . 4 (𝜑𝜑)
117 tglineeltr.8 . . . 4 (𝜑𝑅 ∈ (𝑃𝐿𝑆))
1185adantr 480 . . . . . 6 ((𝜑𝑅𝐵) → 𝐺 ∈ TarskiG)
1197adantr 480 . . . . . 6 ((𝜑𝑅𝐵) → 𝑃𝐵)
12013adantr 480 . . . . . 6 ((𝜑𝑅𝐵) → 𝑆𝐵)
12151adantr 480 . . . . . 6 ((𝜑𝑅𝐵) → 𝑃𝑆)
122 simpr 484 . . . . . 6 ((𝜑𝑅𝐵) → 𝑅𝐵)
1232, 3, 4, 118, 119, 120, 121, 122tgellng 28579 . . . . 5 ((𝜑𝑅𝐵) → (𝑅 ∈ (𝑃𝐿𝑆) ↔ (𝑅 ∈ (𝑃𝐼𝑆) ∨ 𝑃 ∈ (𝑅𝐼𝑆) ∨ 𝑆 ∈ (𝑃𝐼𝑅))))
124123biimpa 476 . . . 4 (((𝜑𝑅𝐵) ∧ 𝑅 ∈ (𝑃𝐿𝑆)) → (𝑅 ∈ (𝑃𝐼𝑆) ∨ 𝑃 ∈ (𝑅𝐼𝑆) ∨ 𝑆 ∈ (𝑃𝐼𝑅)))
125116, 1, 117, 124syl21anc 837 . . 3 (𝜑 → (𝑅 ∈ (𝑃𝐼𝑆) ∨ 𝑃 ∈ (𝑅𝐼𝑆) ∨ 𝑆 ∈ (𝑃𝐼𝑅)))
12644, 81, 115, 125mpjao3dan 1432 . 2 (𝜑 → (𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄))
12738neneqd 2951 . 2 (𝜑 → ¬ 𝑃 = 𝑄)
128 pm5.61 1001 . . 3 (((𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄) ∧ ¬ 𝑃 = 𝑄) ↔ (𝑅 ∈ (𝑃𝐿𝑄) ∧ ¬ 𝑃 = 𝑄))
129128simplbi 497 . 2 (((𝑅 ∈ (𝑃𝐿𝑄) ∨ 𝑃 = 𝑄) ∧ ¬ 𝑃 = 𝑄) → 𝑅 ∈ (𝑃𝐿𝑄))
130126, 127, 129syl2anc 583 1 (𝜑𝑅 ∈ (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537
This theorem is referenced by:  tglineelsb2  28658  colperpexlem3  28758  mideulem2  28760
  Copyright terms: Public domain W3C validator