MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch Structured version   Visualization version   GIF version

Theorem tgbtwnexch 28521
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnexch.2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch (𝜑𝐵 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnexch
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
6 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
7 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
8 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
9 tgbtwnexch.2 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
101, 2, 3, 4, 7, 8, 5, 9tgbtwncom 28511 . . 3 (𝜑𝐶 ∈ (𝐷𝐼𝐴))
11 tgbtwnexch.1 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
121, 2, 3, 4, 7, 6, 8, 11tgbtwncom 28511 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
131, 2, 3, 4, 5, 8, 6, 7, 10, 12tgbtwnexch2 28519 . 2 (𝜑𝐵 ∈ (𝐷𝐼𝐴))
141, 2, 3, 4, 5, 6, 7, 13tgbtwncom 28511 1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476
This theorem is referenced by:  tgcgrxfr  28541  tgbtwnconn1lem1  28595  tgbtwnconn1lem3  28597  legtrd  28612  hltr  28633  hlbtwn  28634  tglineeltr  28654  miriso  28693  outpasch  28778
  Copyright terms: Public domain W3C validator