MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch Structured version   Visualization version   GIF version

Theorem tgbtwnexch 28474
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnexch.2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch (𝜑𝐵 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnexch
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
6 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
7 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
8 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
9 tgbtwnexch.2 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
101, 2, 3, 4, 7, 8, 5, 9tgbtwncom 28464 . . 3 (𝜑𝐶 ∈ (𝐷𝐼𝐴))
11 tgbtwnexch.1 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
121, 2, 3, 4, 7, 6, 8, 11tgbtwncom 28464 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
131, 2, 3, 4, 5, 8, 6, 7, 10, 12tgbtwnexch2 28472 . 2 (𝜑𝐵 ∈ (𝐷𝐼𝐴))
141, 2, 3, 4, 5, 6, 7, 13tgbtwncom 28464 1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-trkgc 28424  df-trkgb 28425  df-trkgcb 28426  df-trkg 28429
This theorem is referenced by:  tgcgrxfr  28494  tgbtwnconn1lem1  28548  tgbtwnconn1lem3  28550  legtrd  28565  hltr  28586  hlbtwn  28587  tglineeltr  28607  miriso  28646  outpasch  28731
  Copyright terms: Public domain W3C validator