MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch Structured version   Visualization version   GIF version

Theorem tgbtwnexch 28432
Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnexch.2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch (𝜑𝐵 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnexch
StepHypRef Expression
1 tkgeom.p . 2 𝑃 = (Base‘𝐺)
2 tkgeom.d . 2 = (dist‘𝐺)
3 tkgeom.i . 2 𝐼 = (Itv‘𝐺)
4 tkgeom.g . 2 (𝜑𝐺 ∈ TarskiG)
5 tgbtwnintr.4 . 2 (𝜑𝐷𝑃)
6 tgbtwnintr.2 . 2 (𝜑𝐵𝑃)
7 tgbtwnintr.1 . 2 (𝜑𝐴𝑃)
8 tgbtwnintr.3 . . 3 (𝜑𝐶𝑃)
9 tgbtwnexch.2 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
101, 2, 3, 4, 7, 8, 5, 9tgbtwncom 28422 . . 3 (𝜑𝐶 ∈ (𝐷𝐼𝐴))
11 tgbtwnexch.1 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
121, 2, 3, 4, 7, 6, 8, 11tgbtwncom 28422 . . 3 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
131, 2, 3, 4, 5, 8, 6, 7, 10, 12tgbtwnexch2 28430 . 2 (𝜑𝐵 ∈ (𝐷𝐼𝐴))
141, 2, 3, 4, 5, 6, 7, 13tgbtwncom 28422 1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387
This theorem is referenced by:  tgcgrxfr  28452  tgbtwnconn1lem1  28506  tgbtwnconn1lem3  28508  legtrd  28523  hltr  28544  hlbtwn  28545  tglineeltr  28565  miriso  28604  outpasch  28689
  Copyright terms: Public domain W3C validator