| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnexch | Structured version Visualization version GIF version | ||
| Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnexch.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| tgbtwnexch.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Ref | Expression |
|---|---|
| tgbtwnexch | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgbtwnintr.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 6 | tgbtwnintr.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | tgbtwnintr.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | tgbtwnintr.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 9 | tgbtwnexch.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) | |
| 10 | 1, 2, 3, 4, 7, 8, 5, 9 | tgbtwncom 28464 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐷𝐼𝐴)) |
| 11 | tgbtwnexch.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 12 | 1, 2, 3, 4, 7, 6, 8, 11 | tgbtwncom 28464 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 13 | 1, 2, 3, 4, 5, 8, 6, 7, 10, 12 | tgbtwnexch2 28472 | . 2 ⊢ (𝜑 → 𝐵 ∈ (𝐷𝐼𝐴)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 13 | tgbtwncom 28464 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 distcds 17167 TarskiGcstrkg 28403 Itvcitv 28409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-trkgc 28424 df-trkgb 28425 df-trkgcb 28426 df-trkg 28429 |
| This theorem is referenced by: tgcgrxfr 28494 tgbtwnconn1lem1 28548 tgbtwnconn1lem3 28550 legtrd 28565 hltr 28586 hlbtwn 28587 tglineeltr 28607 miriso 28646 outpasch 28731 |
| Copyright terms: Public domain | W3C validator |