MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnouttr2 Structured version   Visualization version   GIF version

Theorem tgbtwnouttr2 28503
Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnouttr2.1 (𝜑𝐵𝐶)
tgbtwnouttr2.2 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgbtwnouttr2.3 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnouttr2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnouttr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . 3 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐴𝐼𝑥))
2 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
3 tkgeom.d . . . . 5 = (dist‘𝐺)
4 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
5 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐺 ∈ TarskiG)
7 tgbtwnintr.3 . . . . . 6 (𝜑𝐶𝑃)
87ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶𝑃)
9 tgbtwnintr.4 . . . . . 6 (𝜑𝐷𝑃)
109ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐷𝑃)
11 tgbtwnintr.2 . . . . . 6 (𝜑𝐵𝑃)
1211ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵𝑃)
13 simplr 769 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝑥𝑃)
14 tgbtwnouttr2.1 . . . . . 6 (𝜑𝐵𝐶)
1514ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵𝐶)
16 tgbtwnintr.1 . . . . . . 7 (𝜑𝐴𝑃)
1716ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐴𝑃)
18 tgbtwnouttr2.2 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
1918ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐵 ∈ (𝐴𝐼𝐶))
202, 3, 4, 6, 17, 12, 8, 13, 19, 1tgbtwnexch3 28502 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐵𝐼𝑥))
21 tgbtwnouttr2.3 . . . . . 6 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
2221ad2antrr 726 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐵𝐼𝐷))
23 simprr 773 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐶 𝑥) = (𝐶 𝐷))
24 eqidd 2738 . . . . 5 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐶 𝐷) = (𝐶 𝐷))
252, 3, 4, 6, 8, 8, 10, 12, 13, 10, 15, 20, 22, 23, 24tgsegconeq 28494 . . . 4 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝑥 = 𝐷)
2625oveq2d 7447 . . 3 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → (𝐴𝐼𝑥) = (𝐴𝐼𝐷))
271, 26eleqtrd 2843 . 2 (((𝜑𝑥𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷))) → 𝐶 ∈ (𝐴𝐼𝐷))
282, 3, 4, 5, 16, 7, 7, 9axtgsegcon 28472 . 2 (𝜑 → ∃𝑥𝑃 (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 𝑥) = (𝐶 𝐷)))
2927, 28r19.29a 3162 1 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461
This theorem is referenced by:  tgbtwnexch2  28504  tgbtwnouttr  28505  tgbtwnconn22  28587  tglineeltr  28639  mirconn  28686  footexALT  28726  footexlem1  28727  footexlem2  28728
  Copyright terms: Public domain W3C validator