| Step | Hyp | Ref
| Expression |
| 1 | | simprl 770 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐶 ∈ (𝐴𝐼𝑥)) |
| 2 | | tkgeom.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
| 3 | | tkgeom.d |
. . . . 5
⊢ − =
(dist‘𝐺) |
| 4 | | tkgeom.i |
. . . . 5
⊢ 𝐼 = (Itv‘𝐺) |
| 5 | | tkgeom.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 6 | 5 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐺 ∈ TarskiG) |
| 7 | | tgbtwnintr.3 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 8 | 7 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐶 ∈ 𝑃) |
| 9 | | tgbtwnintr.4 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 10 | 9 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐷 ∈ 𝑃) |
| 11 | | tgbtwnintr.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 12 | 11 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐵 ∈ 𝑃) |
| 13 | | simplr 768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝑥 ∈ 𝑃) |
| 14 | | tgbtwnouttr2.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 15 | 14 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐵 ≠ 𝐶) |
| 16 | | tgbtwnintr.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 17 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐴 ∈ 𝑃) |
| 18 | | tgbtwnouttr2.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 19 | 18 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 20 | 2, 3, 4, 6, 17, 12, 8, 13, 19, 1 | tgbtwnexch3 28478 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐶 ∈ (𝐵𝐼𝑥)) |
| 21 | | tgbtwnouttr2.3 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| 22 | 21 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐶 ∈ (𝐵𝐼𝐷)) |
| 23 | | simprr 772 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → (𝐶 − 𝑥) = (𝐶 − 𝐷)) |
| 24 | | eqidd 2737 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → (𝐶 − 𝐷) = (𝐶 − 𝐷)) |
| 25 | 2, 3, 4, 6, 8, 8, 10, 12, 13, 10, 15, 20, 22, 23, 24 | tgsegconeq 28470 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝑥 = 𝐷) |
| 26 | 25 | oveq2d 7426 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → (𝐴𝐼𝑥) = (𝐴𝐼𝐷)) |
| 27 | 1, 26 | eleqtrd 2837 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 28 | 2, 3, 4, 5, 16, 7,
7, 9 | axtgsegcon 28448 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝐶 ∈ (𝐴𝐼𝑥) ∧ (𝐶 − 𝑥) = (𝐶 − 𝐷))) |
| 29 | 27, 28 | r19.29a 3149 |
1
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |