| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > btwnhl | Structured version Visualization version GIF version | ||
| Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| btwnhl.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) |
| btwnhl.3 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| btwnhl | ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG) |
| 6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ 𝑃) |
| 8 | hltr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ 𝑃) |
| 10 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐵 ∈ 𝑃) |
| 12 | ishlg.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ 𝑃) |
| 14 | btwnhl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) | |
| 15 | ishlg.k | . . . . . . . . 9 ⊢ 𝐾 = (hlG‘𝐺) | |
| 16 | 1, 3, 15, 12, 10, 8, 4 | ishlg 28600 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(𝐾‘𝐷)𝐵 ↔ (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))) |
| 17 | 14, 16 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))) |
| 18 | 17 | simp1d 1142 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| 19 | 18 | necomd 2984 | . . . . 5 ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ≠ 𝐴) |
| 21 | btwnhl.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) | |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐴𝐼𝐶)) |
| 23 | 1, 2, 3, 5, 13, 9, 7, 22 | tgbtwncom 28486 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐴)) |
| 24 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵)) | |
| 25 | 1, 2, 3, 5, 7, 9, 13, 11, 20, 23, 24 | tgbtwnouttr 28495 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵)) |
| 26 | 1, 2, 3, 5, 7, 9, 11, 25 | tgbtwncom 28486 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
| 27 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐺 ∈ TarskiG) |
| 28 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐴 ∈ 𝑃) |
| 29 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ 𝑃) |
| 30 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ 𝑃) |
| 31 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐶 ∈ 𝑃) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐷𝐼𝐴)) | |
| 33 | 1, 2, 3, 27, 30, 29, 28, 32 | tgbtwncom 28486 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 34 | 21 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐴𝐼𝐶)) |
| 35 | 1, 2, 3, 27, 28, 29, 30, 31, 33, 34 | tgbtwnexch3 28492 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
| 36 | 17 | simp3d 1144 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))) |
| 37 | 26, 35, 36 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 distcds 17177 TarskiGcstrkg 28425 Itvcitv 28431 hlGchlg 28598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-trkgc 28446 df-trkgb 28447 df-trkgcb 28448 df-trkg 28451 df-hlg 28599 |
| This theorem is referenced by: hlcgreulem 28615 opphllem5 28749 colhp 28768 cgrabtwn 28824 sacgr 28829 inaghl 28843 |
| Copyright terms: Public domain | W3C validator |