MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl Structured version   Visualization version   GIF version

Theorem btwnhl 26975
Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl.1 (𝜑𝐴(𝐾𝐷)𝐵)
btwnhl.3 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
btwnhl (𝜑𝐷 ∈ (𝐵𝐼𝐶))

Proof of Theorem btwnhl
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2738 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . 4 (𝜑𝐶𝑃)
76adantr 481 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
8 hltr.d . . . 4 (𝜑𝐷𝑃)
98adantr 481 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
10 ishlg.b . . . 4 (𝜑𝐵𝑃)
1110adantr 481 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
12 ishlg.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 481 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
14 btwnhl.1 . . . . . . . 8 (𝜑𝐴(𝐾𝐷)𝐵)
15 ishlg.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
161, 3, 15, 12, 10, 8, 4ishlg 26963 . . . . . . . 8 (𝜑 → (𝐴(𝐾𝐷)𝐵 ↔ (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))))
1714, 16mpbid 231 . . . . . . 7 (𝜑 → (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))
1817simp1d 1141 . . . . . 6 (𝜑𝐴𝐷)
1918necomd 2999 . . . . 5 (𝜑𝐷𝐴)
2019adantr 481 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝐴)
21 btwnhl.3 . . . . . 6 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
2221adantr 481 . . . . 5 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐴𝐼𝐶))
231, 2, 3, 5, 13, 9, 7, 22tgbtwncom 26849 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐴))
24 simpr 485 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵))
251, 2, 3, 5, 7, 9, 13, 11, 20, 23, 24tgbtwnouttr 26858 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵))
261, 2, 3, 5, 7, 9, 11, 25tgbtwncom 26849 . 2 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐵𝐼𝐶))
274adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐺 ∈ TarskiG)
2812adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐴𝑃)
2910adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵𝑃)
308adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷𝑃)
316adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐶𝑃)
32 simpr 485 . . . 4 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐷𝐼𝐴))
331, 2, 3, 27, 30, 29, 28, 32tgbtwncom 26849 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐷))
3421adantr 481 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐴𝐼𝐶))
351, 2, 3, 27, 28, 29, 30, 31, 33, 34tgbtwnexch3 26855 . 2 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
3617simp3d 1143 . 2 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))
3726, 35, 36mpjaodan 956 1 (𝜑𝐷 ∈ (𝐵𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  hlGchlg 26961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-hlg 26962
This theorem is referenced by:  hlcgreulem  26978  opphllem5  27112  colhp  27131  cgrabtwn  27187  sacgr  27192  inaghl  27206
  Copyright terms: Public domain W3C validator