Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > btwnhl | Structured version Visualization version GIF version |
Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
btwnhl.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) |
btwnhl.3 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
btwnhl | ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG) |
6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ 𝑃) |
8 | hltr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ 𝑃) |
10 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐵 ∈ 𝑃) |
12 | ishlg.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
13 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ 𝑃) |
14 | btwnhl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) | |
15 | ishlg.k | . . . . . . . . 9 ⊢ 𝐾 = (hlG‘𝐺) | |
16 | 1, 3, 15, 12, 10, 8, 4 | ishlg 26963 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(𝐾‘𝐷)𝐵 ↔ (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))) |
17 | 14, 16 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))) |
18 | 17 | simp1d 1141 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
19 | 18 | necomd 2999 | . . . . 5 ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
20 | 19 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ≠ 𝐴) |
21 | btwnhl.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) | |
22 | 21 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐴𝐼𝐶)) |
23 | 1, 2, 3, 5, 13, 9, 7, 22 | tgbtwncom 26849 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐴)) |
24 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵)) | |
25 | 1, 2, 3, 5, 7, 9, 13, 11, 20, 23, 24 | tgbtwnouttr 26858 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵)) |
26 | 1, 2, 3, 5, 7, 9, 11, 25 | tgbtwncom 26849 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
27 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐺 ∈ TarskiG) |
28 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐴 ∈ 𝑃) |
29 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ 𝑃) |
30 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ 𝑃) |
31 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐶 ∈ 𝑃) |
32 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐷𝐼𝐴)) | |
33 | 1, 2, 3, 27, 30, 29, 28, 32 | tgbtwncom 26849 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
34 | 21 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐴𝐼𝐶)) |
35 | 1, 2, 3, 27, 28, 29, 30, 31, 33, 34 | tgbtwnexch3 26855 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
36 | 17 | simp3d 1143 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))) |
37 | 26, 35, 36 | mpjaodan 956 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 hlGchlg 26961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 df-hlg 26962 |
This theorem is referenced by: hlcgreulem 26978 opphllem5 27112 colhp 27131 cgrabtwn 27187 sacgr 27192 inaghl 27206 |
Copyright terms: Public domain | W3C validator |