MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl Structured version   Visualization version   GIF version

Theorem btwnhl 28593
Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl.1 (𝜑𝐴(𝐾𝐷)𝐵)
btwnhl.3 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
btwnhl (𝜑𝐷 ∈ (𝐵𝐼𝐶))

Proof of Theorem btwnhl
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2735 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
8 hltr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
10 ishlg.b . . . 4 (𝜑𝐵𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
12 ishlg.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 480 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
14 btwnhl.1 . . . . . . . 8 (𝜑𝐴(𝐾𝐷)𝐵)
15 ishlg.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
161, 3, 15, 12, 10, 8, 4ishlg 28581 . . . . . . . 8 (𝜑 → (𝐴(𝐾𝐷)𝐵 ↔ (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))))
1714, 16mpbid 232 . . . . . . 7 (𝜑 → (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))
1817simp1d 1142 . . . . . 6 (𝜑𝐴𝐷)
1918necomd 2987 . . . . 5 (𝜑𝐷𝐴)
2019adantr 480 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝐴)
21 btwnhl.3 . . . . . 6 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
2221adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐴𝐼𝐶))
231, 2, 3, 5, 13, 9, 7, 22tgbtwncom 28467 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐴))
24 simpr 484 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵))
251, 2, 3, 5, 7, 9, 13, 11, 20, 23, 24tgbtwnouttr 28476 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵))
261, 2, 3, 5, 7, 9, 11, 25tgbtwncom 28467 . 2 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐵𝐼𝐶))
274adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐺 ∈ TarskiG)
2812adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐴𝑃)
2910adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵𝑃)
308adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷𝑃)
316adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐶𝑃)
32 simpr 484 . . . 4 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐷𝐼𝐴))
331, 2, 3, 27, 30, 29, 28, 32tgbtwncom 28467 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐷))
3421adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐴𝐼𝐶))
351, 2, 3, 27, 28, 29, 30, 31, 33, 34tgbtwnexch3 28473 . 2 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
3617simp3d 1144 . 2 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))
3726, 35, 36mpjaodan 960 1 (𝜑𝐷 ∈ (𝐵𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  hlGchlg 28579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-hlg 28580
This theorem is referenced by:  hlcgreulem  28596  opphllem5  28730  colhp  28749  cgrabtwn  28805  sacgr  28810  inaghl  28824
  Copyright terms: Public domain W3C validator