MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl Structured version   Visualization version   GIF version

Theorem btwnhl 28548
Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl.1 (𝜑𝐴(𝐾𝐷)𝐵)
btwnhl.3 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
btwnhl (𝜑𝐷 ∈ (𝐵𝐼𝐶))

Proof of Theorem btwnhl
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2730 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
8 hltr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
10 ishlg.b . . . 4 (𝜑𝐵𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
12 ishlg.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 480 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
14 btwnhl.1 . . . . . . . 8 (𝜑𝐴(𝐾𝐷)𝐵)
15 ishlg.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
161, 3, 15, 12, 10, 8, 4ishlg 28536 . . . . . . . 8 (𝜑 → (𝐴(𝐾𝐷)𝐵 ↔ (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))))
1714, 16mpbid 232 . . . . . . 7 (𝜑 → (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))
1817simp1d 1142 . . . . . 6 (𝜑𝐴𝐷)
1918necomd 2981 . . . . 5 (𝜑𝐷𝐴)
2019adantr 480 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝐴)
21 btwnhl.3 . . . . . 6 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
2221adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐴𝐼𝐶))
231, 2, 3, 5, 13, 9, 7, 22tgbtwncom 28422 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐴))
24 simpr 484 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵))
251, 2, 3, 5, 7, 9, 13, 11, 20, 23, 24tgbtwnouttr 28431 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵))
261, 2, 3, 5, 7, 9, 11, 25tgbtwncom 28422 . 2 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐵𝐼𝐶))
274adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐺 ∈ TarskiG)
2812adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐴𝑃)
2910adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵𝑃)
308adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷𝑃)
316adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐶𝑃)
32 simpr 484 . . . 4 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐷𝐼𝐴))
331, 2, 3, 27, 30, 29, 28, 32tgbtwncom 28422 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐷))
3421adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐴𝐼𝐶))
351, 2, 3, 27, 28, 29, 30, 31, 33, 34tgbtwnexch3 28428 . 2 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
3617simp3d 1144 . 2 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))
3726, 35, 36mpjaodan 960 1 (𝜑𝐷 ∈ (𝐵𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  hlGchlg 28534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-hlg 28535
This theorem is referenced by:  hlcgreulem  28551  opphllem5  28685  colhp  28704  cgrabtwn  28760  sacgr  28765  inaghl  28779
  Copyright terms: Public domain W3C validator