![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwnhl | Structured version Visualization version GIF version |
Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
btwnhl.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) |
btwnhl.3 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
btwnhl | ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2778 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG) |
6 | ishlg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ 𝑃) |
8 | hltr.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ 𝑃) |
10 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | 10 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐵 ∈ 𝑃) |
12 | ishlg.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
13 | 12 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ 𝑃) |
14 | btwnhl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴(𝐾‘𝐷)𝐵) | |
15 | ishlg.k | . . . . . . . . 9 ⊢ 𝐾 = (hlG‘𝐺) | |
16 | 1, 3, 15, 12, 10, 8, 4 | ishlg 25953 | . . . . . . . 8 ⊢ (𝜑 → (𝐴(𝐾‘𝐷)𝐵 ↔ (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))) |
17 | 14, 16 | mpbid 224 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ≠ 𝐷 ∧ 𝐵 ≠ 𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))) |
18 | 17 | simp1d 1133 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
19 | 18 | necomd 3024 | . . . . 5 ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
20 | 19 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ≠ 𝐴) |
21 | btwnhl.3 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐼𝐶)) | |
22 | 21 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐴𝐼𝐶)) |
23 | 1, 2, 3, 5, 13, 9, 7, 22 | tgbtwncom 25839 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐴)) |
24 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵)) | |
25 | 1, 2, 3, 5, 7, 9, 13, 11, 20, 23, 24 | tgbtwnouttr 25848 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵)) |
26 | 1, 2, 3, 5, 7, 9, 11, 25 | tgbtwncom 25839 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
27 | 4 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐺 ∈ TarskiG) |
28 | 12 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐴 ∈ 𝑃) |
29 | 10 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ 𝑃) |
30 | 8 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ 𝑃) |
31 | 6 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐶 ∈ 𝑃) |
32 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐷𝐼𝐴)) | |
33 | 1, 2, 3, 27, 30, 29, 28, 32 | tgbtwncom 25839 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐷)) |
34 | 21 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐴𝐼𝐶)) |
35 | 1, 2, 3, 27, 28, 29, 30, 31, 33, 34 | tgbtwnexch3 25845 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶)) |
36 | 17 | simp3d 1135 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))) |
37 | 26, 35, 36 | mpjaodan 944 | 1 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐼𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 836 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 distcds 16347 TarskiGcstrkg 25781 Itvcitv 25787 hlGchlg 25951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-trkgc 25799 df-trkgb 25800 df-trkgcb 25801 df-trkg 25804 df-hlg 25952 |
This theorem is referenced by: hlcgreulem 25968 opphllem5 26099 colhp 26118 cgrabtwn 26174 sacgr 26179 sacgrOLD 26180 inaghl 26194 |
Copyright terms: Public domain | W3C validator |