MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl Structured version   Visualization version   GIF version

Theorem btwnhl 26879
Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl.1 (𝜑𝐴(𝐾𝐷)𝐵)
btwnhl.3 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
btwnhl (𝜑𝐷 ∈ (𝐵𝐼𝐶))

Proof of Theorem btwnhl
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2738 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
8 hltr.d . . . 4 (𝜑𝐷𝑃)
98adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
10 ishlg.b . . . 4 (𝜑𝐵𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
12 ishlg.a . . . . 5 (𝜑𝐴𝑃)
1312adantr 480 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
14 btwnhl.1 . . . . . . . 8 (𝜑𝐴(𝐾𝐷)𝐵)
15 ishlg.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
161, 3, 15, 12, 10, 8, 4ishlg 26867 . . . . . . . 8 (𝜑 → (𝐴(𝐾𝐷)𝐵 ↔ (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))))
1714, 16mpbid 231 . . . . . . 7 (𝜑 → (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))
1817simp1d 1140 . . . . . 6 (𝜑𝐴𝐷)
1918necomd 2998 . . . . 5 (𝜑𝐷𝐴)
2019adantr 480 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷𝐴)
21 btwnhl.3 . . . . . 6 (𝜑𝐷 ∈ (𝐴𝐼𝐶))
2221adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐴𝐼𝐶))
231, 2, 3, 5, 13, 9, 7, 22tgbtwncom 26753 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐴))
24 simpr 484 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵))
251, 2, 3, 5, 7, 9, 13, 11, 20, 23, 24tgbtwnouttr 26762 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵))
261, 2, 3, 5, 7, 9, 11, 25tgbtwncom 26753 . 2 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → 𝐷 ∈ (𝐵𝐼𝐶))
274adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐺 ∈ TarskiG)
2812adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐴𝑃)
2910adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵𝑃)
308adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷𝑃)
316adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐶𝑃)
32 simpr 484 . . . 4 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐷𝐼𝐴))
331, 2, 3, 27, 30, 29, 28, 32tgbtwncom 26753 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐷))
3421adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐴𝐼𝐶))
351, 2, 3, 27, 28, 29, 30, 31, 33, 34tgbtwnexch3 26759 . 2 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → 𝐷 ∈ (𝐵𝐼𝐶))
3617simp3d 1142 . 2 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))
3726, 35, 36mpjaodan 955 1 (𝜑𝐷 ∈ (𝐵𝐼𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  hlGchlg 26865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-hlg 26866
This theorem is referenced by:  hlcgreulem  26882  opphllem5  27016  colhp  27035  cgrabtwn  27091  sacgr  27096  inaghl  27110
  Copyright terms: Public domain W3C validator