MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncom Structured version   Visualization version   GIF version

Theorem tgbtwncom 28466
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncom.3 (𝜑𝐶𝑃)
tgbtwncom.4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
tgbtwncom (𝜑𝐵 ∈ (𝐶𝐼𝐴))

Proof of Theorem tgbtwncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵𝑃)
8 simplr 768 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥𝑃)
9 simprl 770 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 28444 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥)
11 simprr 772 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴))
1210, 11eqeltrd 2831 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴))
13 tgbtwntriv2.1 . . 3 (𝜑𝐴𝑃)
14 tgbtwncom.3 . . 3 (𝜑𝐶𝑃)
15 tgbtwncom.4 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
161, 2, 3, 4, 6, 14tgbtwntriv2 28465 . . 3 (𝜑𝐶 ∈ (𝐵𝐼𝐶))
171, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16axtgpasch 28445 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴)))
1812, 17r19.29a 3140 1 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431
This theorem is referenced by:  tgbtwncomb  28467  tgbtwntriv1  28469  tgbtwnexch3  28472  tgbtwnexch2  28474  tgbtwnouttr  28475  tgbtwnexch  28476  tgtrisegint  28477  tgifscgr  28486  tgcgrxfr  28496  tgbtwnconn1lem1  28550  tgbtwnconn1lem2  28551  tgbtwnconn1lem3  28552  tgbtwnconn1  28553  tgbtwnconn3  28555  tgbtwnconn22  28557  tgbtwnconnln1  28558  tgbtwnconnln2  28559  legtri3  28568  legtrid  28569  legbtwn  28572  tgcgrsub2  28573  hlln  28585  btwnhl2  28591  btwnhl  28592  hlcgrex  28594  hlcgreulem  28595  tglineeltr  28609  mirreu3  28632  mirmir  28640  mireq  28643  miriso  28648  mirconn  28656  mirbtwnhl  28658  mirhl2  28659  mircgrextend  28660  miduniq  28663  colmid  28666  krippenlem  28668  krippen  28669  midexlem  28670  ragflat  28682  ragcgr  28685  footexALT  28696  footexlem1  28697  footexlem2  28698  colperpexlem1  28708  colperpexlem3  28710  mideulem2  28712  opphllem  28713  midex  28715  oppcom  28722  opphllem5  28729  opphllem6  28730  outpasch  28733  hlpasch  28734  lnopp2hpgb  28741  colhp  28748  midbtwn  28757  hypcgrlem1  28777  hypcgrlem2  28778  flatcgra  28802  cgrabtwn  28804  cgracol  28806  dfcgra2  28808  sacgr  28809  oacgr  28810  inagswap  28819  inaghl  28823
  Copyright terms: Public domain W3C validator