MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncom Structured version   Visualization version   GIF version

Theorem tgbtwncom 28003
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwntriv2.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwntriv2.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwncom.3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwncom.4 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
Assertion
Ref Expression
tgbtwncom (πœ‘ β†’ 𝐡 ∈ (𝐢𝐼𝐴))

Proof of Theorem tgbtwncom
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 tkgeom.d . . . 4 βˆ’ = (distβ€˜πΊ)
3 tkgeom.i . . . 4 𝐼 = (Itvβ€˜πΊ)
4 tkgeom.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴))) β†’ 𝐺 ∈ TarskiG)
6 tgbtwntriv2.2 . . . . 5 (πœ‘ β†’ 𝐡 ∈ 𝑃)
76ad2antrr 723 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴))) β†’ 𝐡 ∈ 𝑃)
8 simplr 766 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴))) β†’ π‘₯ ∈ 𝑃)
9 simprl 768 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴))) β†’ π‘₯ ∈ (𝐡𝐼𝐡))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 27981 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴))) β†’ 𝐡 = π‘₯)
11 simprr 770 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴))) β†’ π‘₯ ∈ (𝐢𝐼𝐴))
1210, 11eqeltrd 2832 . 2 (((πœ‘ ∧ π‘₯ ∈ 𝑃) ∧ (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴))) β†’ 𝐡 ∈ (𝐢𝐼𝐴))
13 tgbtwntriv2.1 . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
14 tgbtwncom.3 . . 3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
15 tgbtwncom.4 . . 3 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐢))
161, 2, 3, 4, 6, 14tgbtwntriv2 28002 . . 3 (πœ‘ β†’ 𝐢 ∈ (𝐡𝐼𝐢))
171, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16axtgpasch 27982 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝑃 (π‘₯ ∈ (𝐡𝐼𝐡) ∧ π‘₯ ∈ (𝐢𝐼𝐴)))
1812, 17r19.29a 3161 1 (πœ‘ β†’ 𝐡 ∈ (𝐢𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  β€˜cfv 6544  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27942  Itvcitv 27948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7415  df-trkgc 27963  df-trkgb 27964  df-trkgcb 27965  df-trkg 27968
This theorem is referenced by:  tgbtwncomb  28004  tgbtwntriv1  28006  tgbtwnexch3  28009  tgbtwnexch2  28011  tgbtwnouttr  28012  tgbtwnexch  28013  tgtrisegint  28014  tgifscgr  28023  tgcgrxfr  28033  tgbtwnconn1lem1  28087  tgbtwnconn1lem2  28088  tgbtwnconn1lem3  28089  tgbtwnconn1  28090  tgbtwnconn3  28092  tgbtwnconn22  28094  tgbtwnconnln1  28095  tgbtwnconnln2  28096  legtri3  28105  legtrid  28106  legbtwn  28109  tgcgrsub2  28110  hlln  28122  btwnhl2  28128  btwnhl  28129  hlcgrex  28131  hlcgreulem  28132  tglineeltr  28146  mirreu3  28169  mirmir  28177  mireq  28180  miriso  28185  mirconn  28193  mirbtwnhl  28195  mirhl2  28196  mircgrextend  28197  miduniq  28200  colmid  28203  krippenlem  28205  krippen  28206  midexlem  28207  ragflat  28219  ragcgr  28222  footexALT  28233  footexlem1  28234  footexlem2  28235  colperpexlem1  28245  colperpexlem3  28247  mideulem2  28249  opphllem  28250  midex  28252  oppcom  28259  opphllem5  28266  opphllem6  28267  outpasch  28270  hlpasch  28271  lnopp2hpgb  28278  colhp  28285  midbtwn  28294  hypcgrlem1  28314  hypcgrlem2  28315  flatcgra  28339  cgrabtwn  28341  cgracol  28343  dfcgra2  28345  sacgr  28346  oacgr  28347  inagswap  28356  inaghl  28360
  Copyright terms: Public domain W3C validator