MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncom Structured version   Visualization version   GIF version

Theorem tgbtwncom 28496
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncom.3 (𝜑𝐶𝑃)
tgbtwncom.4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
tgbtwncom (𝜑𝐵 ∈ (𝐶𝐼𝐴))

Proof of Theorem tgbtwncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵𝑃)
8 simplr 769 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥𝑃)
9 simprl 771 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 28474 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥)
11 simprr 773 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴))
1210, 11eqeltrd 2841 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴))
13 tgbtwntriv2.1 . . 3 (𝜑𝐴𝑃)
14 tgbtwncom.3 . . 3 (𝜑𝐶𝑃)
15 tgbtwncom.4 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
161, 2, 3, 4, 6, 14tgbtwntriv2 28495 . . 3 (𝜑𝐶 ∈ (𝐵𝐼𝐶))
171, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16axtgpasch 28475 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴)))
1812, 17r19.29a 3162 1 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461
This theorem is referenced by:  tgbtwncomb  28497  tgbtwntriv1  28499  tgbtwnexch3  28502  tgbtwnexch2  28504  tgbtwnouttr  28505  tgbtwnexch  28506  tgtrisegint  28507  tgifscgr  28516  tgcgrxfr  28526  tgbtwnconn1lem1  28580  tgbtwnconn1lem2  28581  tgbtwnconn1lem3  28582  tgbtwnconn1  28583  tgbtwnconn3  28585  tgbtwnconn22  28587  tgbtwnconnln1  28588  tgbtwnconnln2  28589  legtri3  28598  legtrid  28599  legbtwn  28602  tgcgrsub2  28603  hlln  28615  btwnhl2  28621  btwnhl  28622  hlcgrex  28624  hlcgreulem  28625  tglineeltr  28639  mirreu3  28662  mirmir  28670  mireq  28673  miriso  28678  mirconn  28686  mirbtwnhl  28688  mirhl2  28689  mircgrextend  28690  miduniq  28693  colmid  28696  krippenlem  28698  krippen  28699  midexlem  28700  ragflat  28712  ragcgr  28715  footexALT  28726  footexlem1  28727  footexlem2  28728  colperpexlem1  28738  colperpexlem3  28740  mideulem2  28742  opphllem  28743  midex  28745  oppcom  28752  opphllem5  28759  opphllem6  28760  outpasch  28763  hlpasch  28764  lnopp2hpgb  28771  colhp  28778  midbtwn  28787  hypcgrlem1  28807  hypcgrlem2  28808  flatcgra  28832  cgrabtwn  28834  cgracol  28836  dfcgra2  28838  sacgr  28839  oacgr  28840  inagswap  28849  inaghl  28853
  Copyright terms: Public domain W3C validator