| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version | ||
| Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwncom.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwncom.4 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| tgbtwncom | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwntriv2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ 𝑃) |
| 8 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ 𝑃) | |
| 9 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
| 10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28415 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥) |
| 11 | simprr 772 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴)) | |
| 12 | 10, 11 | eqeltrd 2828 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 13 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 14 | tgbtwncom.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 15 | tgbtwncom.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 28436 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐶)) |
| 17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 28416 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) |
| 18 | 12, 17 | r19.29a 3137 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 distcds 17170 TarskiGcstrkg 28376 Itvcitv 28382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-trkgc 28397 df-trkgb 28398 df-trkgcb 28399 df-trkg 28402 |
| This theorem is referenced by: tgbtwncomb 28438 tgbtwntriv1 28440 tgbtwnexch3 28443 tgbtwnexch2 28445 tgbtwnouttr 28446 tgbtwnexch 28447 tgtrisegint 28448 tgifscgr 28457 tgcgrxfr 28467 tgbtwnconn1lem1 28521 tgbtwnconn1lem2 28522 tgbtwnconn1lem3 28523 tgbtwnconn1 28524 tgbtwnconn3 28526 tgbtwnconn22 28528 tgbtwnconnln1 28529 tgbtwnconnln2 28530 legtri3 28539 legtrid 28540 legbtwn 28543 tgcgrsub2 28544 hlln 28556 btwnhl2 28562 btwnhl 28563 hlcgrex 28565 hlcgreulem 28566 tglineeltr 28580 mirreu3 28603 mirmir 28611 mireq 28614 miriso 28619 mirconn 28627 mirbtwnhl 28629 mirhl2 28630 mircgrextend 28631 miduniq 28634 colmid 28637 krippenlem 28639 krippen 28640 midexlem 28641 ragflat 28653 ragcgr 28656 footexALT 28667 footexlem1 28668 footexlem2 28669 colperpexlem1 28679 colperpexlem3 28681 mideulem2 28683 opphllem 28684 midex 28686 oppcom 28693 opphllem5 28700 opphllem6 28701 outpasch 28704 hlpasch 28705 lnopp2hpgb 28712 colhp 28719 midbtwn 28728 hypcgrlem1 28748 hypcgrlem2 28749 flatcgra 28773 cgrabtwn 28775 cgracol 28777 dfcgra2 28779 sacgr 28780 oacgr 28781 inagswap 28790 inaghl 28794 |
| Copyright terms: Public domain | W3C validator |