![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version |
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwncom.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwncom.4 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
tgbtwncom | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG) |
6 | tgbtwntriv2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ 𝑃) |
8 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ 𝑃) | |
9 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28492 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥) |
11 | simprr 772 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴)) | |
12 | 10, 11 | eqeltrd 2844 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴)) |
13 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
14 | tgbtwncom.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
15 | tgbtwncom.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 28513 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐶)) |
17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 28493 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) |
18 | 12, 17 | r19.29a 3168 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 |
This theorem is referenced by: tgbtwncomb 28515 tgbtwntriv1 28517 tgbtwnexch3 28520 tgbtwnexch2 28522 tgbtwnouttr 28523 tgbtwnexch 28524 tgtrisegint 28525 tgifscgr 28534 tgcgrxfr 28544 tgbtwnconn1lem1 28598 tgbtwnconn1lem2 28599 tgbtwnconn1lem3 28600 tgbtwnconn1 28601 tgbtwnconn3 28603 tgbtwnconn22 28605 tgbtwnconnln1 28606 tgbtwnconnln2 28607 legtri3 28616 legtrid 28617 legbtwn 28620 tgcgrsub2 28621 hlln 28633 btwnhl2 28639 btwnhl 28640 hlcgrex 28642 hlcgreulem 28643 tglineeltr 28657 mirreu3 28680 mirmir 28688 mireq 28691 miriso 28696 mirconn 28704 mirbtwnhl 28706 mirhl2 28707 mircgrextend 28708 miduniq 28711 colmid 28714 krippenlem 28716 krippen 28717 midexlem 28718 ragflat 28730 ragcgr 28733 footexALT 28744 footexlem1 28745 footexlem2 28746 colperpexlem1 28756 colperpexlem3 28758 mideulem2 28760 opphllem 28761 midex 28763 oppcom 28770 opphllem5 28777 opphllem6 28778 outpasch 28781 hlpasch 28782 lnopp2hpgb 28789 colhp 28796 midbtwn 28805 hypcgrlem1 28825 hypcgrlem2 28826 flatcgra 28850 cgrabtwn 28852 cgracol 28854 dfcgra2 28856 sacgr 28857 oacgr 28858 inagswap 28867 inaghl 28871 |
Copyright terms: Public domain | W3C validator |