MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncom Structured version   Visualization version   GIF version

Theorem tgbtwncom 26753
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncom.3 (𝜑𝐶𝑃)
tgbtwncom.4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
tgbtwncom (𝜑𝐵 ∈ (𝐶𝐼𝐴))

Proof of Theorem tgbtwncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 722 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 722 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵𝑃)
8 simplr 765 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥𝑃)
9 simprl 767 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 26731 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥)
11 simprr 769 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴))
1210, 11eqeltrd 2839 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴))
13 tgbtwntriv2.1 . . 3 (𝜑𝐴𝑃)
14 tgbtwncom.3 . . 3 (𝜑𝐶𝑃)
15 tgbtwncom.4 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
161, 2, 3, 4, 6, 14tgbtwntriv2 26752 . . 3 (𝜑𝐶 ∈ (𝐵𝐼𝐶))
171, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16axtgpasch 26732 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴)))
1812, 17r19.29a 3217 1 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgbtwncomb  26754  tgbtwntriv1  26756  tgbtwnexch3  26759  tgbtwnexch2  26761  tgbtwnouttr  26762  tgbtwnexch  26763  tgtrisegint  26764  tgifscgr  26773  tgcgrxfr  26783  tgbtwnconn1lem1  26837  tgbtwnconn1lem2  26838  tgbtwnconn1lem3  26839  tgbtwnconn1  26840  tgbtwnconn3  26842  tgbtwnconn22  26844  tgbtwnconnln1  26845  tgbtwnconnln2  26846  legtri3  26855  legtrid  26856  legbtwn  26859  tgcgrsub2  26860  hlln  26872  btwnhl2  26878  btwnhl  26879  hlcgrex  26881  hlcgreulem  26882  tglineeltr  26896  mirreu3  26919  mirmir  26927  mireq  26930  miriso  26935  mirconn  26943  mirbtwnhl  26945  mirhl2  26946  mircgrextend  26947  miduniq  26950  colmid  26953  krippenlem  26955  krippen  26956  midexlem  26957  ragflat  26969  ragcgr  26972  footexALT  26983  footexlem1  26984  footexlem2  26985  colperpexlem1  26995  colperpexlem3  26997  mideulem2  26999  opphllem  27000  midex  27002  oppcom  27009  opphllem5  27016  opphllem6  27017  outpasch  27020  hlpasch  27021  lnopp2hpgb  27028  colhp  27035  midbtwn  27044  hypcgrlem1  27064  hypcgrlem2  27065  flatcgra  27089  cgrabtwn  27091  cgracol  27093  dfcgra2  27095  sacgr  27096  oacgr  27097  inagswap  27106  inaghl  27110
  Copyright terms: Public domain W3C validator