Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version |
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwncom.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwncom.4 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
tgbtwncom | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG) |
6 | tgbtwntriv2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ 𝑃) |
8 | simplr 766 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ 𝑃) | |
9 | simprl 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 26827 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥) |
11 | simprr 770 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴)) | |
12 | 10, 11 | eqeltrd 2839 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴)) |
13 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
14 | tgbtwncom.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
15 | tgbtwncom.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 26848 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐶)) |
17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 26828 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) |
18 | 12, 17 | r19.29a 3218 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 |
This theorem is referenced by: tgbtwncomb 26850 tgbtwntriv1 26852 tgbtwnexch3 26855 tgbtwnexch2 26857 tgbtwnouttr 26858 tgbtwnexch 26859 tgtrisegint 26860 tgifscgr 26869 tgcgrxfr 26879 tgbtwnconn1lem1 26933 tgbtwnconn1lem2 26934 tgbtwnconn1lem3 26935 tgbtwnconn1 26936 tgbtwnconn3 26938 tgbtwnconn22 26940 tgbtwnconnln1 26941 tgbtwnconnln2 26942 legtri3 26951 legtrid 26952 legbtwn 26955 tgcgrsub2 26956 hlln 26968 btwnhl2 26974 btwnhl 26975 hlcgrex 26977 hlcgreulem 26978 tglineeltr 26992 mirreu3 27015 mirmir 27023 mireq 27026 miriso 27031 mirconn 27039 mirbtwnhl 27041 mirhl2 27042 mircgrextend 27043 miduniq 27046 colmid 27049 krippenlem 27051 krippen 27052 midexlem 27053 ragflat 27065 ragcgr 27068 footexALT 27079 footexlem1 27080 footexlem2 27081 colperpexlem1 27091 colperpexlem3 27093 mideulem2 27095 opphllem 27096 midex 27098 oppcom 27105 opphllem5 27112 opphllem6 27113 outpasch 27116 hlpasch 27117 lnopp2hpgb 27124 colhp 27131 midbtwn 27140 hypcgrlem1 27160 hypcgrlem2 27161 flatcgra 27185 cgrabtwn 27187 cgracol 27189 dfcgra2 27191 sacgr 27192 oacgr 27193 inagswap 27202 inaghl 27206 |
Copyright terms: Public domain | W3C validator |