Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version |
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwncom.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwncom.4 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
Ref | Expression |
---|---|
tgbtwncom | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG) |
6 | tgbtwntriv2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | 6 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ 𝑃) |
8 | simplr 765 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ 𝑃) | |
9 | simprl 767 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 26731 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥) |
11 | simprr 769 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴)) | |
12 | 10, 11 | eqeltrd 2839 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴)) |
13 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
14 | tgbtwncom.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
15 | tgbtwncom.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 26752 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐶)) |
17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 26732 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) |
18 | 12, 17 | r19.29a 3217 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 |
This theorem is referenced by: tgbtwncomb 26754 tgbtwntriv1 26756 tgbtwnexch3 26759 tgbtwnexch2 26761 tgbtwnouttr 26762 tgbtwnexch 26763 tgtrisegint 26764 tgifscgr 26773 tgcgrxfr 26783 tgbtwnconn1lem1 26837 tgbtwnconn1lem2 26838 tgbtwnconn1lem3 26839 tgbtwnconn1 26840 tgbtwnconn3 26842 tgbtwnconn22 26844 tgbtwnconnln1 26845 tgbtwnconnln2 26846 legtri3 26855 legtrid 26856 legbtwn 26859 tgcgrsub2 26860 hlln 26872 btwnhl2 26878 btwnhl 26879 hlcgrex 26881 hlcgreulem 26882 tglineeltr 26896 mirreu3 26919 mirmir 26927 mireq 26930 miriso 26935 mirconn 26943 mirbtwnhl 26945 mirhl2 26946 mircgrextend 26947 miduniq 26950 colmid 26953 krippenlem 26955 krippen 26956 midexlem 26957 ragflat 26969 ragcgr 26972 footexALT 26983 footexlem1 26984 footexlem2 26985 colperpexlem1 26995 colperpexlem3 26997 mideulem2 26999 opphllem 27000 midex 27002 oppcom 27009 opphllem5 27016 opphllem6 27017 outpasch 27020 hlpasch 27021 lnopp2hpgb 27028 colhp 27035 midbtwn 27044 hypcgrlem1 27064 hypcgrlem2 27065 flatcgra 27089 cgrabtwn 27091 cgracol 27093 dfcgra2 27095 sacgr 27096 oacgr 27097 inagswap 27106 inaghl 27110 |
Copyright terms: Public domain | W3C validator |