![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version |
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | β’ π = (BaseβπΊ) |
tkgeom.d | β’ β = (distβπΊ) |
tkgeom.i | β’ πΌ = (ItvβπΊ) |
tkgeom.g | β’ (π β πΊ β TarskiG) |
tgbtwntriv2.1 | β’ (π β π΄ β π) |
tgbtwntriv2.2 | β’ (π β π΅ β π) |
tgbtwncom.3 | β’ (π β πΆ β π) |
tgbtwncom.4 | β’ (π β π΅ β (π΄πΌπΆ)) |
Ref | Expression |
---|---|
tgbtwncom | β’ (π β π΅ β (πΆπΌπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . . . 4 β’ π = (BaseβπΊ) | |
2 | tkgeom.d | . . . 4 β’ β = (distβπΊ) | |
3 | tkgeom.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
4 | tkgeom.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
5 | 4 | ad2antrr 723 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) β πΊ β TarskiG) |
6 | tgbtwntriv2.2 | . . . . 5 β’ (π β π΅ β π) | |
7 | 6 | ad2antrr 723 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) β π΅ β π) |
8 | simplr 766 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) β π₯ β π) | |
9 | simprl 768 | . . . 4 β’ (((π β§ π₯ β π) β§ (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) β π₯ β (π΅πΌπ΅)) | |
10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 27981 | . . 3 β’ (((π β§ π₯ β π) β§ (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) β π΅ = π₯) |
11 | simprr 770 | . . 3 β’ (((π β§ π₯ β π) β§ (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) β π₯ β (πΆπΌπ΄)) | |
12 | 10, 11 | eqeltrd 2832 | . 2 β’ (((π β§ π₯ β π) β§ (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) β π΅ β (πΆπΌπ΄)) |
13 | tgbtwntriv2.1 | . . 3 β’ (π β π΄ β π) | |
14 | tgbtwncom.3 | . . 3 β’ (π β πΆ β π) | |
15 | tgbtwncom.4 | . . 3 β’ (π β π΅ β (π΄πΌπΆ)) | |
16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 28002 | . . 3 β’ (π β πΆ β (π΅πΌπΆ)) |
17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 27982 | . 2 β’ (π β βπ₯ β π (π₯ β (π΅πΌπ΅) β§ π₯ β (πΆπΌπ΄))) |
18 | 12, 17 | r19.29a 3161 | 1 β’ (π β π΅ β (πΆπΌπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6544 (class class class)co 7412 Basecbs 17149 distcds 17211 TarskiGcstrkg 27942 Itvcitv 27948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7415 df-trkgc 27963 df-trkgb 27964 df-trkgcb 27965 df-trkg 27968 |
This theorem is referenced by: tgbtwncomb 28004 tgbtwntriv1 28006 tgbtwnexch3 28009 tgbtwnexch2 28011 tgbtwnouttr 28012 tgbtwnexch 28013 tgtrisegint 28014 tgifscgr 28023 tgcgrxfr 28033 tgbtwnconn1lem1 28087 tgbtwnconn1lem2 28088 tgbtwnconn1lem3 28089 tgbtwnconn1 28090 tgbtwnconn3 28092 tgbtwnconn22 28094 tgbtwnconnln1 28095 tgbtwnconnln2 28096 legtri3 28105 legtrid 28106 legbtwn 28109 tgcgrsub2 28110 hlln 28122 btwnhl2 28128 btwnhl 28129 hlcgrex 28131 hlcgreulem 28132 tglineeltr 28146 mirreu3 28169 mirmir 28177 mireq 28180 miriso 28185 mirconn 28193 mirbtwnhl 28195 mirhl2 28196 mircgrextend 28197 miduniq 28200 colmid 28203 krippenlem 28205 krippen 28206 midexlem 28207 ragflat 28219 ragcgr 28222 footexALT 28233 footexlem1 28234 footexlem2 28235 colperpexlem1 28245 colperpexlem3 28247 mideulem2 28249 opphllem 28250 midex 28252 oppcom 28259 opphllem5 28266 opphllem6 28267 outpasch 28270 hlpasch 28271 lnopp2hpgb 28278 colhp 28285 midbtwn 28294 hypcgrlem1 28314 hypcgrlem2 28315 flatcgra 28339 cgrabtwn 28341 cgracol 28343 dfcgra2 28345 sacgr 28346 oacgr 28347 inagswap 28356 inaghl 28360 |
Copyright terms: Public domain | W3C validator |