| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version | ||
| Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwncom.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwncom.4 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| tgbtwncom | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwntriv2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ 𝑃) |
| 8 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ 𝑃) | |
| 9 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
| 10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28400 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥) |
| 11 | simprr 772 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴)) | |
| 12 | 10, 11 | eqeltrd 2829 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 13 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 14 | tgbtwncom.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 15 | tgbtwncom.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 28421 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐶)) |
| 17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 28401 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) |
| 18 | 12, 17 | r19.29a 3142 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 |
| This theorem is referenced by: tgbtwncomb 28423 tgbtwntriv1 28425 tgbtwnexch3 28428 tgbtwnexch2 28430 tgbtwnouttr 28431 tgbtwnexch 28432 tgtrisegint 28433 tgifscgr 28442 tgcgrxfr 28452 tgbtwnconn1lem1 28506 tgbtwnconn1lem2 28507 tgbtwnconn1lem3 28508 tgbtwnconn1 28509 tgbtwnconn3 28511 tgbtwnconn22 28513 tgbtwnconnln1 28514 tgbtwnconnln2 28515 legtri3 28524 legtrid 28525 legbtwn 28528 tgcgrsub2 28529 hlln 28541 btwnhl2 28547 btwnhl 28548 hlcgrex 28550 hlcgreulem 28551 tglineeltr 28565 mirreu3 28588 mirmir 28596 mireq 28599 miriso 28604 mirconn 28612 mirbtwnhl 28614 mirhl2 28615 mircgrextend 28616 miduniq 28619 colmid 28622 krippenlem 28624 krippen 28625 midexlem 28626 ragflat 28638 ragcgr 28641 footexALT 28652 footexlem1 28653 footexlem2 28654 colperpexlem1 28664 colperpexlem3 28666 mideulem2 28668 opphllem 28669 midex 28671 oppcom 28678 opphllem5 28685 opphllem6 28686 outpasch 28689 hlpasch 28690 lnopp2hpgb 28697 colhp 28704 midbtwn 28713 hypcgrlem1 28733 hypcgrlem2 28734 flatcgra 28758 cgrabtwn 28760 cgracol 28762 dfcgra2 28764 sacgr 28765 oacgr 28766 inagswap 28775 inaghl 28779 |
| Copyright terms: Public domain | W3C validator |