| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version | ||
| Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwncom.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwncom.4 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| tgbtwncom | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwntriv2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ 𝑃) |
| 8 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ 𝑃) | |
| 9 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
| 10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28446 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥) |
| 11 | simprr 772 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴)) | |
| 12 | 10, 11 | eqeltrd 2828 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 13 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 14 | tgbtwncom.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 15 | tgbtwncom.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 28467 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐶)) |
| 17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 28447 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) |
| 18 | 12, 17 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 TarskiGcstrkg 28407 Itvcitv 28413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-trkgc 28428 df-trkgb 28429 df-trkgcb 28430 df-trkg 28433 |
| This theorem is referenced by: tgbtwncomb 28469 tgbtwntriv1 28471 tgbtwnexch3 28474 tgbtwnexch2 28476 tgbtwnouttr 28477 tgbtwnexch 28478 tgtrisegint 28479 tgifscgr 28488 tgcgrxfr 28498 tgbtwnconn1lem1 28552 tgbtwnconn1lem2 28553 tgbtwnconn1lem3 28554 tgbtwnconn1 28555 tgbtwnconn3 28557 tgbtwnconn22 28559 tgbtwnconnln1 28560 tgbtwnconnln2 28561 legtri3 28570 legtrid 28571 legbtwn 28574 tgcgrsub2 28575 hlln 28587 btwnhl2 28593 btwnhl 28594 hlcgrex 28596 hlcgreulem 28597 tglineeltr 28611 mirreu3 28634 mirmir 28642 mireq 28645 miriso 28650 mirconn 28658 mirbtwnhl 28660 mirhl2 28661 mircgrextend 28662 miduniq 28665 colmid 28668 krippenlem 28670 krippen 28671 midexlem 28672 ragflat 28684 ragcgr 28687 footexALT 28698 footexlem1 28699 footexlem2 28700 colperpexlem1 28710 colperpexlem3 28712 mideulem2 28714 opphllem 28715 midex 28717 oppcom 28724 opphllem5 28731 opphllem6 28732 outpasch 28735 hlpasch 28736 lnopp2hpgb 28743 colhp 28750 midbtwn 28759 hypcgrlem1 28779 hypcgrlem2 28780 flatcgra 28804 cgrabtwn 28806 cgracol 28808 dfcgra2 28810 sacgr 28811 oacgr 28812 inagswap 28821 inaghl 28825 |
| Copyright terms: Public domain | W3C validator |