MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwncom Structured version   Visualization version   GIF version

Theorem tgbtwncom 28510
Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwntriv2.1 (𝜑𝐴𝑃)
tgbtwntriv2.2 (𝜑𝐵𝑃)
tgbtwncom.3 (𝜑𝐶𝑃)
tgbtwncom.4 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
Assertion
Ref Expression
tgbtwncom (𝜑𝐵 ∈ (𝐶𝐼𝐴))

Proof of Theorem tgbtwncom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . 4 𝑃 = (Base‘𝐺)
2 tkgeom.d . . . 4 = (dist‘𝐺)
3 tkgeom.i . . . 4 𝐼 = (Itv‘𝐺)
4 tkgeom.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG)
6 tgbtwntriv2.2 . . . . 5 (𝜑𝐵𝑃)
76ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵𝑃)
8 simplr 769 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥𝑃)
9 simprl 771 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵))
101, 2, 3, 5, 7, 8, 9axtgbtwnid 28488 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥)
11 simprr 773 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴))
1210, 11eqeltrd 2838 . 2 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴))
13 tgbtwntriv2.1 . . 3 (𝜑𝐴𝑃)
14 tgbtwncom.3 . . 3 (𝜑𝐶𝑃)
15 tgbtwncom.4 . . 3 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
161, 2, 3, 4, 6, 14tgbtwntriv2 28509 . . 3 (𝜑𝐶 ∈ (𝐵𝐼𝐶))
171, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16axtgpasch 28489 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴)))
1812, 17r19.29a 3159 1 (𝜑𝐵 ∈ (𝐶𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  Basecbs 17244  distcds 17306  TarskiGcstrkg 28449  Itvcitv 28455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-nul 5311
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-iota 6515  df-fv 6570  df-ov 7433  df-trkgc 28470  df-trkgb 28471  df-trkgcb 28472  df-trkg 28475
This theorem is referenced by:  tgbtwncomb  28511  tgbtwntriv1  28513  tgbtwnexch3  28516  tgbtwnexch2  28518  tgbtwnouttr  28519  tgbtwnexch  28520  tgtrisegint  28521  tgifscgr  28530  tgcgrxfr  28540  tgbtwnconn1lem1  28594  tgbtwnconn1lem2  28595  tgbtwnconn1lem3  28596  tgbtwnconn1  28597  tgbtwnconn3  28599  tgbtwnconn22  28601  tgbtwnconnln1  28602  tgbtwnconnln2  28603  legtri3  28612  legtrid  28613  legbtwn  28616  tgcgrsub2  28617  hlln  28629  btwnhl2  28635  btwnhl  28636  hlcgrex  28638  hlcgreulem  28639  tglineeltr  28653  mirreu3  28676  mirmir  28684  mireq  28687  miriso  28692  mirconn  28700  mirbtwnhl  28702  mirhl2  28703  mircgrextend  28704  miduniq  28707  colmid  28710  krippenlem  28712  krippen  28713  midexlem  28714  ragflat  28726  ragcgr  28729  footexALT  28740  footexlem1  28741  footexlem2  28742  colperpexlem1  28752  colperpexlem3  28754  mideulem2  28756  opphllem  28757  midex  28759  oppcom  28766  opphllem5  28773  opphllem6  28774  outpasch  28777  hlpasch  28778  lnopp2hpgb  28785  colhp  28792  midbtwn  28801  hypcgrlem1  28821  hypcgrlem2  28822  flatcgra  28846  cgrabtwn  28848  cgracol  28850  dfcgra2  28852  sacgr  28853  oacgr  28854  inagswap  28863  inaghl  28867
  Copyright terms: Public domain W3C validator