| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwncom | Structured version Visualization version GIF version | ||
| Description: Betweenness commutes. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwntriv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwntriv2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwncom.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwncom.4 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) |
| Ref | Expression |
|---|---|
| tgbtwncom | ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐺 ∈ TarskiG) |
| 6 | tgbtwntriv2.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ 𝑃) |
| 8 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ 𝑃) | |
| 9 | simprl 770 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐵𝐼𝐵)) | |
| 10 | 1, 2, 3, 5, 7, 8, 9 | axtgbtwnid 28393 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 = 𝑥) |
| 11 | simprr 772 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝑥 ∈ (𝐶𝐼𝐴)) | |
| 12 | 10, 11 | eqeltrd 2828 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 13 | tgbtwntriv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 14 | tgbtwncom.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 15 | tgbtwncom.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐶)) | |
| 16 | 1, 2, 3, 4, 6, 14 | tgbtwntriv2 28414 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐶)) |
| 17 | 1, 2, 3, 4, 13, 6, 14, 6, 14, 15, 16 | axtgpasch 28394 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐵𝐼𝐵) ∧ 𝑥 ∈ (𝐶𝐼𝐴))) |
| 18 | 12, 17 | r19.29a 3141 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐶𝐼𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-trkgc 28375 df-trkgb 28376 df-trkgcb 28377 df-trkg 28380 |
| This theorem is referenced by: tgbtwncomb 28416 tgbtwntriv1 28418 tgbtwnexch3 28421 tgbtwnexch2 28423 tgbtwnouttr 28424 tgbtwnexch 28425 tgtrisegint 28426 tgifscgr 28435 tgcgrxfr 28445 tgbtwnconn1lem1 28499 tgbtwnconn1lem2 28500 tgbtwnconn1lem3 28501 tgbtwnconn1 28502 tgbtwnconn3 28504 tgbtwnconn22 28506 tgbtwnconnln1 28507 tgbtwnconnln2 28508 legtri3 28517 legtrid 28518 legbtwn 28521 tgcgrsub2 28522 hlln 28534 btwnhl2 28540 btwnhl 28541 hlcgrex 28543 hlcgreulem 28544 tglineeltr 28558 mirreu3 28581 mirmir 28589 mireq 28592 miriso 28597 mirconn 28605 mirbtwnhl 28607 mirhl2 28608 mircgrextend 28609 miduniq 28612 colmid 28615 krippenlem 28617 krippen 28618 midexlem 28619 ragflat 28631 ragcgr 28634 footexALT 28645 footexlem1 28646 footexlem2 28647 colperpexlem1 28657 colperpexlem3 28659 mideulem2 28661 opphllem 28662 midex 28664 oppcom 28671 opphllem5 28678 opphllem6 28679 outpasch 28682 hlpasch 28683 lnopp2hpgb 28690 colhp 28697 midbtwn 28706 hypcgrlem1 28726 hypcgrlem2 28727 flatcgra 28751 cgrabtwn 28753 cgracol 28755 dfcgra2 28757 sacgr 28758 oacgr 28759 inagswap 28768 inaghl 28772 |
| Copyright terms: Public domain | W3C validator |