MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch2 Structured version   Visualization version   GIF version

Theorem tgbtwnexch2 28472
Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch2.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnexch2.2 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnexch2
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 tgbtwnexch2.1 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
32adantr 480 . . 3 ((𝜑𝐵 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷))
41, 3eqeltrrd 2832 . 2 ((𝜑𝐵 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷))
5 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
6 tkgeom.d . . 3 = (dist‘𝐺)
7 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
8 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
10 tgbtwnintr.1 . . . 4 (𝜑𝐴𝑃)
1110adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
12 tgbtwnintr.2 . . . 4 (𝜑𝐵𝑃)
1312adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
14 tgbtwnintr.3 . . . 4 (𝜑𝐶𝑃)
1514adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
16 tgbtwnintr.4 . . . 4 (𝜑𝐷𝑃)
1716adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐷𝑃)
18 simpr 484 . . 3 ((𝜑𝐵𝐶) → 𝐵𝐶)
19 tgbtwnexch2.2 . . . . . 6 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
2019adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐵𝐼𝐷))
212adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐴𝐼𝐷))
225, 6, 7, 9, 15, 13, 11, 17, 20, 21tgbtwnintr 28469 . . . 4 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼𝐴))
235, 6, 7, 9, 15, 13, 11, 22tgbtwncom 28464 . . 3 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
245, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20tgbtwnouttr2 28471 . 2 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼𝐷))
254, 24pm2.61dane 3015 1 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-trkgc 28424  df-trkgb 28425  df-trkgcb 28426  df-trkg 28429
This theorem is referenced by:  tgbtwnexch  28474  tgtrisegint  28475  tgbtwnconn1lem3  28550  legtri3  28566  miriso  28646
  Copyright terms: Public domain W3C validator