![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgbtwnexch2 | Structured version Visualization version GIF version |
Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | β’ π = (BaseβπΊ) |
tkgeom.d | β’ β = (distβπΊ) |
tkgeom.i | β’ πΌ = (ItvβπΊ) |
tkgeom.g | β’ (π β πΊ β TarskiG) |
tgbtwnintr.1 | β’ (π β π΄ β π) |
tgbtwnintr.2 | β’ (π β π΅ β π) |
tgbtwnintr.3 | β’ (π β πΆ β π) |
tgbtwnintr.4 | β’ (π β π· β π) |
tgbtwnexch2.1 | β’ (π β π΅ β (π΄πΌπ·)) |
tgbtwnexch2.2 | β’ (π β πΆ β (π΅πΌπ·)) |
Ref | Expression |
---|---|
tgbtwnexch2 | β’ (π β πΆ β (π΄πΌπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 β’ ((π β§ π΅ = πΆ) β π΅ = πΆ) | |
2 | tgbtwnexch2.1 | . . . 4 β’ (π β π΅ β (π΄πΌπ·)) | |
3 | 2 | adantr 480 | . . 3 β’ ((π β§ π΅ = πΆ) β π΅ β (π΄πΌπ·)) |
4 | 1, 3 | eqeltrrd 2826 | . 2 β’ ((π β§ π΅ = πΆ) β πΆ β (π΄πΌπ·)) |
5 | tkgeom.p | . . 3 β’ π = (BaseβπΊ) | |
6 | tkgeom.d | . . 3 β’ β = (distβπΊ) | |
7 | tkgeom.i | . . 3 β’ πΌ = (ItvβπΊ) | |
8 | tkgeom.g | . . . 4 β’ (π β πΊ β TarskiG) | |
9 | 8 | adantr 480 | . . 3 β’ ((π β§ π΅ β πΆ) β πΊ β TarskiG) |
10 | tgbtwnintr.1 | . . . 4 β’ (π β π΄ β π) | |
11 | 10 | adantr 480 | . . 3 β’ ((π β§ π΅ β πΆ) β π΄ β π) |
12 | tgbtwnintr.2 | . . . 4 β’ (π β π΅ β π) | |
13 | 12 | adantr 480 | . . 3 β’ ((π β§ π΅ β πΆ) β π΅ β π) |
14 | tgbtwnintr.3 | . . . 4 β’ (π β πΆ β π) | |
15 | 14 | adantr 480 | . . 3 β’ ((π β§ π΅ β πΆ) β πΆ β π) |
16 | tgbtwnintr.4 | . . . 4 β’ (π β π· β π) | |
17 | 16 | adantr 480 | . . 3 β’ ((π β§ π΅ β πΆ) β π· β π) |
18 | simpr 484 | . . 3 β’ ((π β§ π΅ β πΆ) β π΅ β πΆ) | |
19 | tgbtwnexch2.2 | . . . . . 6 β’ (π β πΆ β (π΅πΌπ·)) | |
20 | 19 | adantr 480 | . . . . 5 β’ ((π β§ π΅ β πΆ) β πΆ β (π΅πΌπ·)) |
21 | 2 | adantr 480 | . . . . 5 β’ ((π β§ π΅ β πΆ) β π΅ β (π΄πΌπ·)) |
22 | 5, 6, 7, 9, 15, 13, 11, 17, 20, 21 | tgbtwnintr 28213 | . . . 4 β’ ((π β§ π΅ β πΆ) β π΅ β (πΆπΌπ΄)) |
23 | 5, 6, 7, 9, 15, 13, 11, 22 | tgbtwncom 28208 | . . 3 β’ ((π β§ π΅ β πΆ) β π΅ β (π΄πΌπΆ)) |
24 | 5, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20 | tgbtwnouttr2 28215 | . 2 β’ ((π β§ π΅ β πΆ) β πΆ β (π΄πΌπ·)) |
25 | 4, 24 | pm2.61dane 3021 | 1 β’ (π β πΆ β (π΄πΌπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 βcfv 6533 (class class class)co 7401 Basecbs 17143 distcds 17205 TarskiGcstrkg 28147 Itvcitv 28153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-nul 5296 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-ov 7404 df-trkgc 28168 df-trkgb 28169 df-trkgcb 28170 df-trkg 28173 |
This theorem is referenced by: tgbtwnexch 28218 tgtrisegint 28219 tgbtwnconn1lem3 28294 legtri3 28310 miriso 28390 |
Copyright terms: Public domain | W3C validator |