Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgbtwnexch2 | Structured version Visualization version GIF version |
Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgbtwnexch2.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
tgbtwnexch2.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
Ref | Expression |
---|---|
tgbtwnexch2 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
2 | tgbtwnexch2.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷)) |
4 | 1, 3 | eqeltrrd 2838 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷)) |
5 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
6 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
7 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
8 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
10 | tgbtwnintr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
12 | tgbtwnintr.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
14 | tgbtwnintr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
16 | tgbtwnintr.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
17 | 16 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
18 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
19 | tgbtwnexch2.2 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) | |
20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐵𝐼𝐷)) |
21 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷)) |
22 | 5, 6, 7, 9, 15, 13, 11, 17, 20, 21 | tgbtwnintr 27084 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼𝐴)) |
23 | 5, 6, 7, 9, 15, 13, 11, 22 | tgbtwncom 27079 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶)) |
24 | 5, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20 | tgbtwnouttr2 27086 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷)) |
25 | 4, 24 | pm2.61dane 3029 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 distcds 17060 TarskiGcstrkg 27018 Itvcitv 27024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-trkgc 27039 df-trkgb 27040 df-trkgcb 27041 df-trkg 27044 |
This theorem is referenced by: tgbtwnexch 27089 tgtrisegint 27090 tgbtwnconn1lem3 27165 legtri3 27181 miriso 27261 |
Copyright terms: Public domain | W3C validator |