MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch2 Structured version   Visualization version   GIF version

Theorem tgbtwnexch2 28216
Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Baseβ€˜πΊ)
tkgeom.d βˆ’ = (distβ€˜πΊ)
tkgeom.i 𝐼 = (Itvβ€˜πΊ)
tkgeom.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tgbtwnintr.1 (πœ‘ β†’ 𝐴 ∈ 𝑃)
tgbtwnintr.2 (πœ‘ β†’ 𝐡 ∈ 𝑃)
tgbtwnintr.3 (πœ‘ β†’ 𝐢 ∈ 𝑃)
tgbtwnintr.4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
tgbtwnexch2.1 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))
tgbtwnexch2.2 (πœ‘ β†’ 𝐢 ∈ (𝐡𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch2 (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnexch2
StepHypRef Expression
1 simpr 484 . . 3 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐡 = 𝐢)
2 tgbtwnexch2.1 . . . 4 (πœ‘ β†’ 𝐡 ∈ (𝐴𝐼𝐷))
32adantr 480 . . 3 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐡 ∈ (𝐴𝐼𝐷))
41, 3eqeltrrd 2826 . 2 ((πœ‘ ∧ 𝐡 = 𝐢) β†’ 𝐢 ∈ (𝐴𝐼𝐷))
5 tkgeom.p . . 3 𝑃 = (Baseβ€˜πΊ)
6 tkgeom.d . . 3 βˆ’ = (distβ€˜πΊ)
7 tkgeom.i . . 3 𝐼 = (Itvβ€˜πΊ)
8 tkgeom.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
98adantr 480 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐺 ∈ TarskiG)
10 tgbtwnintr.1 . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
1110adantr 480 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐴 ∈ 𝑃)
12 tgbtwnintr.2 . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
1312adantr 480 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐡 ∈ 𝑃)
14 tgbtwnintr.3 . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
1514adantr 480 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐢 ∈ 𝑃)
16 tgbtwnintr.4 . . . 4 (πœ‘ β†’ 𝐷 ∈ 𝑃)
1716adantr 480 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐷 ∈ 𝑃)
18 simpr 484 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐡 β‰  𝐢)
19 tgbtwnexch2.2 . . . . . 6 (πœ‘ β†’ 𝐢 ∈ (𝐡𝐼𝐷))
2019adantr 480 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐢 ∈ (𝐡𝐼𝐷))
212adantr 480 . . . . 5 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐡 ∈ (𝐴𝐼𝐷))
225, 6, 7, 9, 15, 13, 11, 17, 20, 21tgbtwnintr 28213 . . . 4 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐡 ∈ (𝐢𝐼𝐴))
235, 6, 7, 9, 15, 13, 11, 22tgbtwncom 28208 . . 3 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐡 ∈ (𝐴𝐼𝐢))
245, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20tgbtwnouttr2 28215 . 2 ((πœ‘ ∧ 𝐡 β‰  𝐢) β†’ 𝐢 ∈ (𝐴𝐼𝐷))
254, 24pm2.61dane 3021 1 (πœ‘ β†’ 𝐢 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  β€˜cfv 6533  (class class class)co 7401  Basecbs 17143  distcds 17205  TarskiGcstrkg 28147  Itvcitv 28153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5296
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-trkgc 28168  df-trkgb 28169  df-trkgcb 28170  df-trkg 28173
This theorem is referenced by:  tgbtwnexch  28218  tgtrisegint  28219  tgbtwnconn1lem3  28294  legtri3  28310  miriso  28390
  Copyright terms: Public domain W3C validator