MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch2 Structured version   Visualization version   GIF version

Theorem tgbtwnexch2 26279
Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch2.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnexch2.2 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnexch2
StepHypRef Expression
1 simpr 488 . . 3 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 tgbtwnexch2.1 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
32adantr 484 . . 3 ((𝜑𝐵 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷))
41, 3eqeltrrd 2917 . 2 ((𝜑𝐵 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷))
5 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
6 tkgeom.d . . 3 = (dist‘𝐺)
7 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
8 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
10 tgbtwnintr.1 . . . 4 (𝜑𝐴𝑃)
1110adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
12 tgbtwnintr.2 . . . 4 (𝜑𝐵𝑃)
1312adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
14 tgbtwnintr.3 . . . 4 (𝜑𝐶𝑃)
1514adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
16 tgbtwnintr.4 . . . 4 (𝜑𝐷𝑃)
1716adantr 484 . . 3 ((𝜑𝐵𝐶) → 𝐷𝑃)
18 simpr 488 . . 3 ((𝜑𝐵𝐶) → 𝐵𝐶)
19 tgbtwnexch2.2 . . . . . 6 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
2019adantr 484 . . . . 5 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐵𝐼𝐷))
212adantr 484 . . . . 5 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐴𝐼𝐷))
225, 6, 7, 9, 15, 13, 11, 17, 20, 21tgbtwnintr 26276 . . . 4 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼𝐴))
235, 6, 7, 9, 15, 13, 11, 22tgbtwncom 26271 . . 3 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
245, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20tgbtwnouttr2 26278 . 2 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼𝐷))
254, 24pm2.61dane 3100 1 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3013  cfv 6336  (class class class)co 7138  Basecbs 16472  distcds 16563  TarskiGcstrkg 26213  Itvcitv 26219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-nul 5191
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-iota 6295  df-fv 6344  df-ov 7141  df-trkgc 26231  df-trkgb 26232  df-trkgcb 26233  df-trkg 26236
This theorem is referenced by:  tgbtwnexch  26281  tgtrisegint  26282  tgbtwnconn1lem3  26357  legtri3  26373  miriso  26453
  Copyright terms: Public domain W3C validator