| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnexch2 | Structured version Visualization version GIF version | ||
| Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnexch2.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| tgbtwnexch2.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| Ref | Expression |
|---|---|
| tgbtwnexch2 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
| 2 | tgbtwnexch2.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 4 | 1, 3 | eqeltrrd 2836 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 5 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 7 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 8 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
| 10 | tgbtwnintr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
| 12 | tgbtwnintr.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
| 14 | tgbtwnintr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
| 16 | tgbtwnintr.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
| 18 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
| 19 | tgbtwnexch2.2 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) | |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐵𝐼𝐷)) |
| 21 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 22 | 5, 6, 7, 9, 15, 13, 11, 17, 20, 21 | tgbtwnintr 28477 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 23 | 5, 6, 7, 9, 15, 13, 11, 22 | tgbtwncom 28472 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 24 | 5, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20 | tgbtwnouttr2 28479 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 25 | 4, 24 | pm2.61dane 3020 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 |
| This theorem is referenced by: tgbtwnexch 28482 tgtrisegint 28483 tgbtwnconn1lem3 28558 legtri3 28574 miriso 28654 |
| Copyright terms: Public domain | W3C validator |