MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch2 Structured version   Visualization version   GIF version

Theorem tgbtwnexch2 26761
Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgbtwnintr.1 (𝜑𝐴𝑃)
tgbtwnintr.2 (𝜑𝐵𝑃)
tgbtwnintr.3 (𝜑𝐶𝑃)
tgbtwnintr.4 (𝜑𝐷𝑃)
tgbtwnexch2.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnexch2.2 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
Assertion
Ref Expression
tgbtwnexch2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))

Proof of Theorem tgbtwnexch2
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 tgbtwnexch2.1 . . . 4 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
32adantr 480 . . 3 ((𝜑𝐵 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷))
41, 3eqeltrrd 2840 . 2 ((𝜑𝐵 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷))
5 tkgeom.p . . 3 𝑃 = (Base‘𝐺)
6 tkgeom.d . . 3 = (dist‘𝐺)
7 tkgeom.i . . 3 𝐼 = (Itv‘𝐺)
8 tkgeom.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
10 tgbtwnintr.1 . . . 4 (𝜑𝐴𝑃)
1110adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
12 tgbtwnintr.2 . . . 4 (𝜑𝐵𝑃)
1312adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
14 tgbtwnintr.3 . . . 4 (𝜑𝐶𝑃)
1514adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
16 tgbtwnintr.4 . . . 4 (𝜑𝐷𝑃)
1716adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐷𝑃)
18 simpr 484 . . 3 ((𝜑𝐵𝐶) → 𝐵𝐶)
19 tgbtwnexch2.2 . . . . . 6 (𝜑𝐶 ∈ (𝐵𝐼𝐷))
2019adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐵𝐼𝐷))
212adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐴𝐼𝐷))
225, 6, 7, 9, 15, 13, 11, 17, 20, 21tgbtwnintr 26758 . . . 4 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼𝐴))
235, 6, 7, 9, 15, 13, 11, 22tgbtwncom 26753 . . 3 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐴𝐼𝐶))
245, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20tgbtwnouttr2 26760 . 2 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼𝐷))
254, 24pm2.61dane 3031 1 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718
This theorem is referenced by:  tgbtwnexch  26763  tgtrisegint  26764  tgbtwnconn1lem3  26839  legtri3  26855  miriso  26935
  Copyright terms: Public domain W3C validator