Step | Hyp | Ref
| Expression |
1 | | prdstgpd.y |
. . 3
⊢ 𝑌 = (𝑆Xs𝑅) |
2 | | prdstgpd.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
3 | | prdstgpd.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
4 | | prdstgpd.r |
. . . 4
⊢ (𝜑 → 𝑅:𝐼⟶TopGrp) |
5 | | tgpgrp 22207 |
. . . . 5
⊢ (𝑥 ∈ TopGrp → 𝑥 ∈ Grp) |
6 | 5 | ssriv 3800 |
. . . 4
⊢ TopGrp
⊆ Grp |
7 | | fss 6267 |
. . . 4
⊢ ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ Grp)
→ 𝑅:𝐼⟶Grp) |
8 | 4, 6, 7 | sylancl 581 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Grp) |
9 | 1, 2, 3, 8 | prdsgrpd 17838 |
. 2
⊢ (𝜑 → 𝑌 ∈ Grp) |
10 | | tgptmd 22208 |
. . . . 5
⊢ (𝑥 ∈ TopGrp → 𝑥 ∈ TopMnd) |
11 | 10 | ssriv 3800 |
. . . 4
⊢ TopGrp
⊆ TopMnd |
12 | | fss 6267 |
. . . 4
⊢ ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ TopMnd)
→ 𝑅:𝐼⟶TopMnd) |
13 | 4, 11, 12 | sylancl 581 |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶TopMnd) |
14 | 1, 2, 3, 13 | prdstmdd 22252 |
. 2
⊢ (𝜑 → 𝑌 ∈ TopMnd) |
15 | | eqid 2797 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
16 | | eqid 2797 |
. . . . . . . 8
⊢
(invg‘𝑌) = (invg‘𝑌) |
17 | 15, 16 | grpinvf 17779 |
. . . . . . 7
⊢ (𝑌 ∈ Grp →
(invg‘𝑌):(Base‘𝑌)⟶(Base‘𝑌)) |
18 | 9, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(invg‘𝑌):(Base‘𝑌)⟶(Base‘𝑌)) |
19 | 18 | feqmptd 6472 |
. . . . 5
⊢ (𝜑 →
(invg‘𝑌) =
(𝑥 ∈ (Base‘𝑌) ↦
((invg‘𝑌)‘𝑥))) |
20 | 2 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑌)) → 𝐼 ∈ 𝑊) |
21 | 3 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑌)) → 𝑆 ∈ 𝑉) |
22 | 8 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp) |
23 | | simpr 478 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑌)) → 𝑥 ∈ (Base‘𝑌)) |
24 | 1, 20, 21, 22, 15, 16, 23 | prdsinvgd 17839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑌)) → ((invg‘𝑌)‘𝑥) = (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝑥‘𝑦)))) |
25 | 24 | mpteq2dva 4935 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘𝑌)‘𝑥)) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝑥‘𝑦))))) |
26 | 19, 25 | eqtrd 2831 |
. . . 4
⊢ (𝜑 →
(invg‘𝑌) =
(𝑥 ∈ (Base‘𝑌) ↦ (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝑥‘𝑦))))) |
27 | | eqid 2797 |
. . . . 5
⊢
(∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen
∘ 𝑅)) |
28 | | eqid 2797 |
. . . . . . 7
⊢
(TopOpen‘𝑌) =
(TopOpen‘𝑌) |
29 | 28, 15 | tmdtopon 22210 |
. . . . . 6
⊢ (𝑌 ∈ TopMnd →
(TopOpen‘𝑌) ∈
(TopOn‘(Base‘𝑌))) |
30 | 14, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → (TopOpen‘𝑌) ∈
(TopOn‘(Base‘𝑌))) |
31 | | topnfn 16398 |
. . . . . . 7
⊢ TopOpen
Fn V |
32 | 4 | ffnd 6255 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
33 | | dffn2 6256 |
. . . . . . . 8
⊢ (𝑅 Fn 𝐼 ↔ 𝑅:𝐼⟶V) |
34 | 32, 33 | sylib 210 |
. . . . . . 7
⊢ (𝜑 → 𝑅:𝐼⟶V) |
35 | | fnfco 6282 |
. . . . . . 7
⊢ ((TopOpen
Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen
∘ 𝑅) Fn 𝐼) |
36 | 31, 34, 35 | sylancr 582 |
. . . . . 6
⊢ (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼) |
37 | | fvco3 6498 |
. . . . . . . . 9
⊢ ((𝑅:𝐼⟶TopGrp ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅‘𝑦))) |
38 | 4, 37 | sylan 576 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅‘𝑦))) |
39 | 4 | ffvelrnda 6583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ TopGrp) |
40 | | eqid 2797 |
. . . . . . . . . 10
⊢
(TopOpen‘(𝑅‘𝑦)) = (TopOpen‘(𝑅‘𝑦)) |
41 | | eqid 2797 |
. . . . . . . . . 10
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
42 | 40, 41 | tgptopon 22211 |
. . . . . . . . 9
⊢ ((𝑅‘𝑦) ∈ TopGrp → (TopOpen‘(𝑅‘𝑦)) ∈ (TopOn‘(Base‘(𝑅‘𝑦)))) |
43 | | topontop 21043 |
. . . . . . . . 9
⊢
((TopOpen‘(𝑅‘𝑦)) ∈ (TopOn‘(Base‘(𝑅‘𝑦))) → (TopOpen‘(𝑅‘𝑦)) ∈ Top) |
44 | 39, 42, 43 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (TopOpen‘(𝑅‘𝑦)) ∈ Top) |
45 | 38, 44 | eqeltrd 2876 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top) |
46 | 45 | ralrimiva 3145 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top) |
47 | | ffnfv 6612 |
. . . . . 6
⊢ ((TopOpen
∘ 𝑅):𝐼⟶Top ↔ ((TopOpen
∘ 𝑅) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)) |
48 | 36, 46, 47 | sylanbrc 579 |
. . . . 5
⊢ (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top) |
49 | 30 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌))) |
50 | 1, 3, 2, 32, 28 | prdstopn 21757 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (TopOpen‘𝑌) =
(∏t‘(TopOpen ∘ 𝑅))) |
51 | 50 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen
∘ 𝑅))) |
52 | 51 | eqcomd 2803 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (∏t‘(TopOpen
∘ 𝑅)) =
(TopOpen‘𝑌)) |
53 | 52, 49 | eqeltrd 2876 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (∏t‘(TopOpen
∘ 𝑅)) ∈
(TopOn‘(Base‘𝑌))) |
54 | | toponuni 21044 |
. . . . . . . . . 10
⊢
((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = ∪
(∏t‘(TopOpen ∘ 𝑅))) |
55 | | mpteq1 4928 |
. . . . . . . . . 10
⊢
((Base‘𝑌) =
∪ (∏t‘(TopOpen ∘ 𝑅)) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥‘𝑦)) = (𝑥 ∈ ∪
(∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥‘𝑦))) |
56 | 53, 54, 55 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥‘𝑦)) = (𝑥 ∈ ∪
(∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥‘𝑦))) |
57 | 2 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
58 | 48 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top) |
59 | | simpr 478 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
60 | | eqid 2797 |
. . . . . . . . . . 11
⊢ ∪ (∏t‘(TopOpen ∘ 𝑅)) = ∪ (∏t‘(TopOpen ∘ 𝑅)) |
61 | 60, 27 | ptpjcn 21740 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ ∪
(∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥‘𝑦)) ∈ ((∏t‘(TopOpen
∘ 𝑅)) Cn ((TopOpen
∘ 𝑅)‘𝑦))) |
62 | 57, 58, 59, 61 | syl3anc 1491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ ∪
(∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥‘𝑦)) ∈ ((∏t‘(TopOpen
∘ 𝑅)) Cn ((TopOpen
∘ 𝑅)‘𝑦))) |
63 | 56, 62 | eqeltrd 2876 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥‘𝑦)) ∈ ((∏t‘(TopOpen
∘ 𝑅)) Cn ((TopOpen
∘ 𝑅)‘𝑦))) |
64 | 52, 38 | oveq12d 6894 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((∏t‘(TopOpen
∘ 𝑅)) Cn ((TopOpen
∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅‘𝑦)))) |
65 | 63, 64 | eleqtrd 2878 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥‘𝑦)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅‘𝑦)))) |
66 | | eqid 2797 |
. . . . . . . . 9
⊢
(invg‘(𝑅‘𝑦)) = (invg‘(𝑅‘𝑦)) |
67 | 40, 66 | tgpinv 22214 |
. . . . . . . 8
⊢ ((𝑅‘𝑦) ∈ TopGrp →
(invg‘(𝑅‘𝑦)) ∈ ((TopOpen‘(𝑅‘𝑦)) Cn (TopOpen‘(𝑅‘𝑦)))) |
68 | 39, 67 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (invg‘(𝑅‘𝑦)) ∈ ((TopOpen‘(𝑅‘𝑦)) Cn (TopOpen‘(𝑅‘𝑦)))) |
69 | 49, 65, 68 | cnmpt11f 21793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅‘𝑦))‘(𝑥‘𝑦))) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅‘𝑦)))) |
70 | 38 | oveq2d 6892 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅‘𝑦)))) |
71 | 69, 70 | eleqtrrd 2879 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅‘𝑦))‘(𝑥‘𝑦))) ∈ ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦))) |
72 | 27, 30, 2, 48, 71 | ptcn 21756 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝑥‘𝑦)))) ∈ ((TopOpen‘𝑌) Cn (∏t‘(TopOpen
∘ 𝑅)))) |
73 | 26, 72 | eqeltrd 2876 |
. . 3
⊢ (𝜑 →
(invg‘𝑌)
∈ ((TopOpen‘𝑌)
Cn (∏t‘(TopOpen ∘ 𝑅)))) |
74 | 50 | oveq2d 6892 |
. . 3
⊢ (𝜑 → ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)) = ((TopOpen‘𝑌) Cn
(∏t‘(TopOpen ∘ 𝑅)))) |
75 | 73, 74 | eleqtrrd 2879 |
. 2
⊢ (𝜑 →
(invg‘𝑌)
∈ ((TopOpen‘𝑌)
Cn (TopOpen‘𝑌))) |
76 | 28, 16 | istgp 22206 |
. 2
⊢ (𝑌 ∈ TopGrp ↔ (𝑌 ∈ Grp ∧ 𝑌 ∈ TopMnd ∧
(invg‘𝑌)
∈ ((TopOpen‘𝑌)
Cn (TopOpen‘𝑌)))) |
77 | 9, 14, 75, 76 | syl3anbrc 1444 |
1
⊢ (𝜑 → 𝑌 ∈ TopGrp) |