MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstgpd Structured version   Visualization version   GIF version

Theorem prdstgpd 24149
Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstgpd.y 𝑌 = (𝑆Xs𝑅)
prdstgpd.i (𝜑𝐼𝑊)
prdstgpd.s (𝜑𝑆𝑉)
prdstgpd.r (𝜑𝑅:𝐼⟶TopGrp)
Assertion
Ref Expression
prdstgpd (𝜑𝑌 ∈ TopGrp)

Proof of Theorem prdstgpd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstgpd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstgpd.i . . 3 (𝜑𝐼𝑊)
3 prdstgpd.s . . 3 (𝜑𝑆𝑉)
4 prdstgpd.r . . . 4 (𝜑𝑅:𝐼⟶TopGrp)
5 tgpgrp 24102 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ Grp)
65ssriv 3999 . . . 4 TopGrp ⊆ Grp
7 fss 6753 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 19081 . 2 (𝜑𝑌 ∈ Grp)
10 tgptmd 24103 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ TopMnd)
1110ssriv 3999 . . . 4 TopGrp ⊆ TopMnd
12 fss 6753 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ TopMnd) → 𝑅:𝐼⟶TopMnd)
134, 11, 12sylancl 586 . . 3 (𝜑𝑅:𝐼⟶TopMnd)
141, 2, 3, 13prdstmdd 24148 . 2 (𝜑𝑌 ∈ TopMnd)
15 eqid 2735 . . . 4 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
16 eqid 2735 . . . . . 6 (TopOpen‘𝑌) = (TopOpen‘𝑌)
17 eqid 2735 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
1816, 17tmdtopon 24105 . . . . 5 (𝑌 ∈ TopMnd → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
1914, 18syl 17 . . . 4 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
20 topnfn 17472 . . . . . 6 TopOpen Fn V
214ffnd 6738 . . . . . . 7 (𝜑𝑅 Fn 𝐼)
22 dffn2 6739 . . . . . . 7 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
2321, 22sylib 218 . . . . . 6 (𝜑𝑅:𝐼⟶V)
24 fnfco 6774 . . . . . 6 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
2520, 23, 24sylancr 587 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
26 fvco3 7008 . . . . . . . 8 ((𝑅:𝐼⟶TopGrp ∧ 𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
274, 26sylan 580 . . . . . . 7 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
284ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ TopGrp)
29 eqid 2735 . . . . . . . . 9 (TopOpen‘(𝑅𝑦)) = (TopOpen‘(𝑅𝑦))
30 eqid 2735 . . . . . . . . 9 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
3129, 30tgptopon 24106 . . . . . . . 8 ((𝑅𝑦) ∈ TopGrp → (TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))))
32 topontop 22935 . . . . . . . 8 ((TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))) → (TopOpen‘(𝑅𝑦)) ∈ Top)
3328, 31, 323syl 18 . . . . . . 7 ((𝜑𝑦𝐼) → (TopOpen‘(𝑅𝑦)) ∈ Top)
3427, 33eqeltrd 2839 . . . . . 6 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
3534ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
36 ffnfv 7139 . . . . 5 ((TopOpen ∘ 𝑅):𝐼⟶Top ↔ ((TopOpen ∘ 𝑅) Fn 𝐼 ∧ ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top))
3725, 35, 36sylanbrc 583 . . . 4 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
3819adantr 480 . . . . . 6 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
391, 3, 2, 21, 16prdstopn 23652 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
4039adantr 480 . . . . . . . . . . 11 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
4140eqcomd 2741 . . . . . . . . . 10 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
4241, 38eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
43 toponuni 22936 . . . . . . . . 9 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
44 mpteq1 5241 . . . . . . . . 9 ((Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
4542, 43, 443syl 18 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
462adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝐼𝑊)
4737adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
48 simpr 484 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑦𝐼)
49 eqid 2735 . . . . . . . . . 10 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
5049, 15ptpjcn 23635 . . . . . . . . 9 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5146, 47, 48, 50syl3anc 1370 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5245, 51eqeltrd 2839 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5341, 27oveq12d 7449 . . . . . . 7 ((𝜑𝑦𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
5452, 53eleqtrd 2841 . . . . . 6 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
55 eqid 2735 . . . . . . . 8 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
5629, 55tgpinv 24109 . . . . . . 7 ((𝑅𝑦) ∈ TopGrp → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
5728, 56syl 17 . . . . . 6 ((𝜑𝑦𝐼) → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
5838, 54, 57cnmpt11f 23688 . . . . 5 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
5927oveq2d 7447 . . . . 5 ((𝜑𝑦𝐼) → ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
6058, 59eleqtrrd 2842 . . . 4 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
6115, 19, 2, 37, 60ptcn 23651 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))) ∈ ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
62 eqid 2735 . . . . . . 7 (invg𝑌) = (invg𝑌)
6317, 62grpinvf 19017 . . . . . 6 (𝑌 ∈ Grp → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
649, 63syl 17 . . . . 5 (𝜑 → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
6564feqmptd 6977 . . . 4 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)))
662adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝐼𝑊)
673adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑆𝑉)
688adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp)
69 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑥 ∈ (Base‘𝑌))
701, 66, 67, 68, 17, 62, 69prdsinvgd 19082 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑌)) → ((invg𝑌)‘𝑥) = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))))
7170mpteq2dva 5248 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
7265, 71eqtrd 2775 . . 3 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
7339oveq2d 7447 . . 3 (𝜑 → ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)) = ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
7461, 72, 733eltr4d 2854 . 2 (𝜑 → (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)))
7516, 62istgp 24101 . 2 (𝑌 ∈ TopGrp ↔ (𝑌 ∈ Grp ∧ 𝑌 ∈ TopMnd ∧ (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌))))
769, 14, 74, 75syl3anbrc 1342 1 (𝜑𝑌 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963   cuni 4912  cmpt 5231  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  TopOpenctopn 17468  tcpt 17485  Xscprds 17492  Grpcgrp 18964  invgcminusg 18965  Topctop 22915  TopOnctopon 22932   Cn ccn 23248  TopMndctmd 24094  TopGrpctgp 24095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-topgen 17490  df-pt 17491  df-prds 17494  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-tmd 24096  df-tgp 24097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator