MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstgpd Structured version   Visualization version   GIF version

Theorem prdstgpd 24049
Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstgpd.y 𝑌 = (𝑆Xs𝑅)
prdstgpd.i (𝜑𝐼𝑊)
prdstgpd.s (𝜑𝑆𝑉)
prdstgpd.r (𝜑𝑅:𝐼⟶TopGrp)
Assertion
Ref Expression
prdstgpd (𝜑𝑌 ∈ TopGrp)

Proof of Theorem prdstgpd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstgpd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstgpd.i . . 3 (𝜑𝐼𝑊)
3 prdstgpd.s . . 3 (𝜑𝑆𝑉)
4 prdstgpd.r . . . 4 (𝜑𝑅:𝐼⟶TopGrp)
5 tgpgrp 24002 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ Grp)
65ssriv 3986 . . . 4 TopGrp ⊆ Grp
7 fss 6744 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 584 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 19013 . 2 (𝜑𝑌 ∈ Grp)
10 tgptmd 24003 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ TopMnd)
1110ssriv 3986 . . . 4 TopGrp ⊆ TopMnd
12 fss 6744 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ TopMnd) → 𝑅:𝐼⟶TopMnd)
134, 11, 12sylancl 584 . . 3 (𝜑𝑅:𝐼⟶TopMnd)
141, 2, 3, 13prdstmdd 24048 . 2 (𝜑𝑌 ∈ TopMnd)
15 eqid 2728 . . . 4 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
16 eqid 2728 . . . . . 6 (TopOpen‘𝑌) = (TopOpen‘𝑌)
17 eqid 2728 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
1816, 17tmdtopon 24005 . . . . 5 (𝑌 ∈ TopMnd → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
1914, 18syl 17 . . . 4 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
20 topnfn 17414 . . . . . 6 TopOpen Fn V
214ffnd 6728 . . . . . . 7 (𝜑𝑅 Fn 𝐼)
22 dffn2 6729 . . . . . . 7 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
2321, 22sylib 217 . . . . . 6 (𝜑𝑅:𝐼⟶V)
24 fnfco 6767 . . . . . 6 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
2520, 23, 24sylancr 585 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
26 fvco3 7002 . . . . . . . 8 ((𝑅:𝐼⟶TopGrp ∧ 𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
274, 26sylan 578 . . . . . . 7 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
284ffvelcdmda 7099 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ TopGrp)
29 eqid 2728 . . . . . . . . 9 (TopOpen‘(𝑅𝑦)) = (TopOpen‘(𝑅𝑦))
30 eqid 2728 . . . . . . . . 9 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
3129, 30tgptopon 24006 . . . . . . . 8 ((𝑅𝑦) ∈ TopGrp → (TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))))
32 topontop 22835 . . . . . . . 8 ((TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))) → (TopOpen‘(𝑅𝑦)) ∈ Top)
3328, 31, 323syl 18 . . . . . . 7 ((𝜑𝑦𝐼) → (TopOpen‘(𝑅𝑦)) ∈ Top)
3427, 33eqeltrd 2829 . . . . . 6 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
3534ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
36 ffnfv 7134 . . . . 5 ((TopOpen ∘ 𝑅):𝐼⟶Top ↔ ((TopOpen ∘ 𝑅) Fn 𝐼 ∧ ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top))
3725, 35, 36sylanbrc 581 . . . 4 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
3819adantr 479 . . . . . 6 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
391, 3, 2, 21, 16prdstopn 23552 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
4039adantr 479 . . . . . . . . . . 11 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
4140eqcomd 2734 . . . . . . . . . 10 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
4241, 38eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
43 toponuni 22836 . . . . . . . . 9 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
44 mpteq1 5245 . . . . . . . . 9 ((Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
4542, 43, 443syl 18 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
462adantr 479 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝐼𝑊)
4737adantr 479 . . . . . . . . 9 ((𝜑𝑦𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
48 simpr 483 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑦𝐼)
49 eqid 2728 . . . . . . . . . 10 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
5049, 15ptpjcn 23535 . . . . . . . . 9 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5146, 47, 48, 50syl3anc 1368 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5245, 51eqeltrd 2829 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5341, 27oveq12d 7444 . . . . . . 7 ((𝜑𝑦𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
5452, 53eleqtrd 2831 . . . . . 6 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
55 eqid 2728 . . . . . . . 8 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
5629, 55tgpinv 24009 . . . . . . 7 ((𝑅𝑦) ∈ TopGrp → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
5728, 56syl 17 . . . . . 6 ((𝜑𝑦𝐼) → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
5838, 54, 57cnmpt11f 23588 . . . . 5 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
5927oveq2d 7442 . . . . 5 ((𝜑𝑦𝐼) → ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
6058, 59eleqtrrd 2832 . . . 4 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
6115, 19, 2, 37, 60ptcn 23551 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))) ∈ ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
62 eqid 2728 . . . . . . 7 (invg𝑌) = (invg𝑌)
6317, 62grpinvf 18950 . . . . . 6 (𝑌 ∈ Grp → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
649, 63syl 17 . . . . 5 (𝜑 → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
6564feqmptd 6972 . . . 4 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)))
662adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝐼𝑊)
673adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑆𝑉)
688adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp)
69 simpr 483 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑥 ∈ (Base‘𝑌))
701, 66, 67, 68, 17, 62, 69prdsinvgd 19014 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑌)) → ((invg𝑌)‘𝑥) = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))))
7170mpteq2dva 5252 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
7265, 71eqtrd 2768 . . 3 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
7339oveq2d 7442 . . 3 (𝜑 → ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)) = ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
7461, 72, 733eltr4d 2844 . 2 (𝜑 → (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)))
7516, 62istgp 24001 . 2 (𝑌 ∈ TopGrp ↔ (𝑌 ∈ Grp ∧ 𝑌 ∈ TopMnd ∧ (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌))))
769, 14, 74, 75syl3anbrc 1340 1 (𝜑𝑌 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3058  Vcvv 3473  wss 3949   cuni 4912  cmpt 5235  ccom 5686   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  Basecbs 17187  TopOpenctopn 17410  tcpt 17427  Xscprds 17434  Grpcgrp 18897  invgcminusg 18898  Topctop 22815  TopOnctopon 22832   Cn ccn 23148  TopMndctmd 23994  TopGrpctgp 23995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-topgen 17432  df-pt 17433  df-prds 17436  df-plusf 18606  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cn 23151  df-cnp 23152  df-tx 23486  df-tmd 23996  df-tgp 23997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator