MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstgpd Structured version   Visualization version   GIF version

Theorem prdstgpd 23276
Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstgpd.y 𝑌 = (𝑆Xs𝑅)
prdstgpd.i (𝜑𝐼𝑊)
prdstgpd.s (𝜑𝑆𝑉)
prdstgpd.r (𝜑𝑅:𝐼⟶TopGrp)
Assertion
Ref Expression
prdstgpd (𝜑𝑌 ∈ TopGrp)

Proof of Theorem prdstgpd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstgpd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstgpd.i . . 3 (𝜑𝐼𝑊)
3 prdstgpd.s . . 3 (𝜑𝑆𝑉)
4 prdstgpd.r . . . 4 (𝜑𝑅:𝐼⟶TopGrp)
5 tgpgrp 23229 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ Grp)
65ssriv 3925 . . . 4 TopGrp ⊆ Grp
7 fss 6617 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 18685 . 2 (𝜑𝑌 ∈ Grp)
10 tgptmd 23230 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ TopMnd)
1110ssriv 3925 . . . 4 TopGrp ⊆ TopMnd
12 fss 6617 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ TopMnd) → 𝑅:𝐼⟶TopMnd)
134, 11, 12sylancl 586 . . 3 (𝜑𝑅:𝐼⟶TopMnd)
141, 2, 3, 13prdstmdd 23275 . 2 (𝜑𝑌 ∈ TopMnd)
15 eqid 2738 . . . 4 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
16 eqid 2738 . . . . . 6 (TopOpen‘𝑌) = (TopOpen‘𝑌)
17 eqid 2738 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
1816, 17tmdtopon 23232 . . . . 5 (𝑌 ∈ TopMnd → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
1914, 18syl 17 . . . 4 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
20 topnfn 17136 . . . . . 6 TopOpen Fn V
214ffnd 6601 . . . . . . 7 (𝜑𝑅 Fn 𝐼)
22 dffn2 6602 . . . . . . 7 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
2321, 22sylib 217 . . . . . 6 (𝜑𝑅:𝐼⟶V)
24 fnfco 6639 . . . . . 6 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
2520, 23, 24sylancr 587 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
26 fvco3 6867 . . . . . . . 8 ((𝑅:𝐼⟶TopGrp ∧ 𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
274, 26sylan 580 . . . . . . 7 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
284ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ TopGrp)
29 eqid 2738 . . . . . . . . 9 (TopOpen‘(𝑅𝑦)) = (TopOpen‘(𝑅𝑦))
30 eqid 2738 . . . . . . . . 9 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
3129, 30tgptopon 23233 . . . . . . . 8 ((𝑅𝑦) ∈ TopGrp → (TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))))
32 topontop 22062 . . . . . . . 8 ((TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))) → (TopOpen‘(𝑅𝑦)) ∈ Top)
3328, 31, 323syl 18 . . . . . . 7 ((𝜑𝑦𝐼) → (TopOpen‘(𝑅𝑦)) ∈ Top)
3427, 33eqeltrd 2839 . . . . . 6 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
3534ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
36 ffnfv 6992 . . . . 5 ((TopOpen ∘ 𝑅):𝐼⟶Top ↔ ((TopOpen ∘ 𝑅) Fn 𝐼 ∧ ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top))
3725, 35, 36sylanbrc 583 . . . 4 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
3819adantr 481 . . . . . 6 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
391, 3, 2, 21, 16prdstopn 22779 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
4039adantr 481 . . . . . . . . . . 11 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
4140eqcomd 2744 . . . . . . . . . 10 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
4241, 38eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
43 toponuni 22063 . . . . . . . . 9 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
44 mpteq1 5167 . . . . . . . . 9 ((Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
4542, 43, 443syl 18 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
462adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝐼𝑊)
4737adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
48 simpr 485 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑦𝐼)
49 eqid 2738 . . . . . . . . . 10 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
5049, 15ptpjcn 22762 . . . . . . . . 9 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5146, 47, 48, 50syl3anc 1370 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5245, 51eqeltrd 2839 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
5341, 27oveq12d 7293 . . . . . . 7 ((𝜑𝑦𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
5452, 53eleqtrd 2841 . . . . . 6 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
55 eqid 2738 . . . . . . . 8 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
5629, 55tgpinv 23236 . . . . . . 7 ((𝑅𝑦) ∈ TopGrp → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
5728, 56syl 17 . . . . . 6 ((𝜑𝑦𝐼) → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
5838, 54, 57cnmpt11f 22815 . . . . 5 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
5927oveq2d 7291 . . . . 5 ((𝜑𝑦𝐼) → ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
6058, 59eleqtrrd 2842 . . . 4 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
6115, 19, 2, 37, 60ptcn 22778 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))) ∈ ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
62 eqid 2738 . . . . . . 7 (invg𝑌) = (invg𝑌)
6317, 62grpinvf 18626 . . . . . 6 (𝑌 ∈ Grp → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
649, 63syl 17 . . . . 5 (𝜑 → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
6564feqmptd 6837 . . . 4 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)))
662adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝐼𝑊)
673adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑆𝑉)
688adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp)
69 simpr 485 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑥 ∈ (Base‘𝑌))
701, 66, 67, 68, 17, 62, 69prdsinvgd 18686 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑌)) → ((invg𝑌)‘𝑥) = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))))
7170mpteq2dva 5174 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
7265, 71eqtrd 2778 . . 3 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
7339oveq2d 7291 . . 3 (𝜑 → ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)) = ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
7461, 72, 733eltr4d 2854 . 2 (𝜑 → (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)))
7516, 62istgp 23228 . 2 (𝑌 ∈ TopGrp ↔ (𝑌 ∈ Grp ∧ 𝑌 ∈ TopMnd ∧ (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌))))
769, 14, 74, 75syl3anbrc 1342 1 (𝜑𝑌 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   cuni 4839  cmpt 5157  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  TopOpenctopn 17132  tcpt 17149  Xscprds 17156  Grpcgrp 18577  invgcminusg 18578  Topctop 22042  TopOnctopon 22059   Cn ccn 22375  TopMndctmd 23221  TopGrpctgp 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-topgen 17154  df-pt 17155  df-prds 17158  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-tmd 23223  df-tgp 23224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator