MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpmulg Structured version   Visualization version   GIF version

Theorem tgpmulg 22677
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tgpmulg.j 𝐽 = (TopOpen‘𝐺)
tgpmulg.t · = (.g𝐺)
tgpmulg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tgpmulg ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑥, ·   𝑥,𝑁

Proof of Theorem tgpmulg
StepHypRef Expression
1 tgptmd 22663 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgpmulg.j . . . . 5 𝐽 = (TopOpen‘𝐺)
3 tgpmulg.t . . . . 5 · = (.g𝐺)
4 tgpmulg.b . . . . 5 𝐵 = (Base‘𝐺)
52, 3, 4tmdmulg 22676 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
61, 5sylan 582 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
76adantlr 713 . 2 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
8 simpllr 774 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℤ)
98zcnd 12067 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℂ)
109negnegd 10966 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → --𝑁 = 𝑁)
1110oveq1d 7148 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥))
12 eqid 2820 . . . . . . . 8 (invg𝐺) = (invg𝐺)
134, 3, 12mulgnegnn 18217 . . . . . . 7 ((-𝑁 ∈ ℕ ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1413adantll 712 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1511, 14eqtr3d 2857 . . . . 5 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1615mpteq2dva 5137 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) = (𝑥𝐵 ↦ ((invg𝐺)‘(-𝑁 · 𝑥))))
172, 4tgptopon 22666 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
1817ad2antrr 724 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵))
191adantr 483 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd)
20 nnnn0 11883 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
212, 3, 4tmdmulg 22676 . . . . . 6 ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2219, 20, 21syl2an 597 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
232, 12tgpinv 22669 . . . . . 6 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽 Cn 𝐽))
2423ad2antrr 724 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
2518, 22, 24cnmpt11f 22248 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ ((invg𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽))
2616, 25eqeltrd 2911 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2726adantrl 714 . 2 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
28 simpr 487 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
29 elznn0nn 11974 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
3028, 29sylib 220 . 2 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
317, 27, 30mpjaodan 955 1 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  cmpt 5122  cfv 6331  (class class class)co 7133  cr 10514  -cneg 10849  cn 11616  0cn0 11876  cz 11960  Basecbs 16462  TopOpenctopn 16674  invgcminusg 18083  .gcmg 18203  TopOnctopon 21494   Cn ccn 21808  TopMndctmd 22654  TopGrpctgp 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-n0 11877  df-z 11961  df-uz 12223  df-seq 13354  df-0g 16694  df-topgen 16696  df-plusf 17830  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mulg 18204  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cn 21811  df-cnp 21812  df-tx 22146  df-tmd 22656  df-tgp 22657
This theorem is referenced by:  tgpmulg2  22678
  Copyright terms: Public domain W3C validator