MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpmulg Structured version   Visualization version   GIF version

Theorem tgpmulg 22305
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tgpmulg.j 𝐽 = (TopOpen‘𝐺)
tgpmulg.t · = (.g𝐺)
tgpmulg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tgpmulg ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑥, ·   𝑥,𝑁

Proof of Theorem tgpmulg
StepHypRef Expression
1 tgptmd 22291 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgpmulg.j . . . . 5 𝐽 = (TopOpen‘𝐺)
3 tgpmulg.t . . . . 5 · = (.g𝐺)
4 tgpmulg.b . . . . 5 𝐵 = (Base‘𝐺)
52, 3, 4tmdmulg 22304 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
61, 5sylan 575 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
76adantlr 705 . 2 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
8 simpllr 766 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℤ)
98zcnd 11835 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℂ)
109negnegd 10725 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → --𝑁 = 𝑁)
1110oveq1d 6937 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥))
12 eqid 2778 . . . . . . . 8 (invg𝐺) = (invg𝐺)
134, 3, 12mulgnegnn 17938 . . . . . . 7 ((-𝑁 ∈ ℕ ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1413adantll 704 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1511, 14eqtr3d 2816 . . . . 5 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1615mpteq2dva 4979 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) = (𝑥𝐵 ↦ ((invg𝐺)‘(-𝑁 · 𝑥))))
172, 4tgptopon 22294 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
1817ad2antrr 716 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵))
191adantr 474 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd)
20 nnnn0 11650 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
212, 3, 4tmdmulg 22304 . . . . . 6 ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2219, 20, 21syl2an 589 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
232, 12tgpinv 22297 . . . . . 6 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽 Cn 𝐽))
2423ad2antrr 716 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
2518, 22, 24cnmpt11f 21876 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ ((invg𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽))
2616, 25eqeltrd 2859 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2726adantrl 706 . 2 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
28 simpr 479 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
29 elznn0nn 11742 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
3028, 29sylib 210 . 2 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
317, 27, 30mpjaodan 944 1 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wcel 2107  cmpt 4965  cfv 6135  (class class class)co 6922  cr 10271  -cneg 10607  cn 11374  0cn0 11642  cz 11728  Basecbs 16255  TopOpenctopn 16468  invgcminusg 17810  .gcmg 17927  TopOnctopon 21122   Cn ccn 21436  TopMndctmd 22282  TopGrpctgp 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-seq 13120  df-0g 16488  df-topgen 16490  df-plusf 17627  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mulg 17928  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cn 21439  df-cnp 21440  df-tx 21774  df-tmd 22284  df-tgp 22285
This theorem is referenced by:  tgpmulg2  22306
  Copyright terms: Public domain W3C validator