| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpmulg | Structured version Visualization version GIF version | ||
| Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgpmulg.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpmulg.t | ⊢ · = (.g‘𝐺) |
| tgpmulg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| tgpmulg | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptmd 23989 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 2 | tgpmulg.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tgpmulg.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 4 | tgpmulg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 2, 3, 4 | tmdmulg 24002 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 6 | 1, 5 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 7 | 6 | adantlr 715 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 8 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) | |
| 9 | 8 | zcnd 12573 | . . . . . . . 8 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℂ) |
| 10 | 9 | negnegd 11458 | . . . . . . 7 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → --𝑁 = 𝑁) |
| 11 | 10 | oveq1d 7356 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥)) |
| 12 | eqid 2731 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 13 | 4, 3, 12 | mulgnegnn 18992 | . . . . . . 7 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
| 14 | 13 | adantll 714 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
| 15 | 11, 14 | eqtr3d 2768 | . . . . 5 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
| 16 | 15 | mpteq2dva 5179 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥)))) |
| 17 | 2, 4 | tgptopon 23992 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
| 18 | 17 | ad2antrr 726 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵)) |
| 19 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd) |
| 20 | nnnn0 12383 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0) | |
| 21 | 2, 3, 4 | tmdmulg 24002 | . . . . . 6 ⊢ ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 22 | 19, 20, 21 | syl2an 596 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 23 | 2, 12 | tgpinv 23995 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
| 24 | 23 | ad2antrr 726 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
| 25 | 18, 22, 24 | cnmpt11f 23574 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽)) |
| 26 | 16, 25 | eqeltrd 2831 | . . 3 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 27 | 26 | adantrl 716 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 28 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 29 | elznn0nn 12477 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
| 31 | 7, 27, 30 | mpjaodan 960 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 -cneg 11340 ℕcn 12120 ℕ0cn0 12376 ℤcz 12463 Basecbs 17115 TopOpenctopn 17320 invgcminusg 18842 .gcmg 18975 TopOnctopon 22820 Cn ccn 23134 TopMndctmd 23980 TopGrpctgp 23981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-0g 17340 df-topgen 17342 df-plusf 18542 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mulg 18976 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cn 23137 df-cnp 23138 df-tx 23472 df-tmd 23982 df-tgp 23983 |
| This theorem is referenced by: tgpmulg2 24004 |
| Copyright terms: Public domain | W3C validator |