| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpmulg | Structured version Visualization version GIF version | ||
| Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgpmulg.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpmulg.t | ⊢ · = (.g‘𝐺) |
| tgpmulg.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| tgpmulg | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptmd 24087 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 2 | tgpmulg.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 3 | tgpmulg.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 4 | tgpmulg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 2, 3, 4 | tmdmulg 24100 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 6 | 1, 5 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 7 | 6 | adantlr 715 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 8 | simpllr 776 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) | |
| 9 | 8 | zcnd 12723 | . . . . . . . 8 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℂ) |
| 10 | 9 | negnegd 11611 | . . . . . . 7 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → --𝑁 = 𝑁) |
| 11 | 10 | oveq1d 7446 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥)) |
| 12 | eqid 2737 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 13 | 4, 3, 12 | mulgnegnn 19102 | . . . . . . 7 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
| 14 | 13 | adantll 714 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
| 15 | 11, 14 | eqtr3d 2779 | . . . . 5 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
| 16 | 15 | mpteq2dva 5242 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥)))) |
| 17 | 2, 4 | tgptopon 24090 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
| 18 | 17 | ad2antrr 726 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵)) |
| 19 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd) |
| 20 | nnnn0 12533 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0) | |
| 21 | 2, 3, 4 | tmdmulg 24100 | . . . . . 6 ⊢ ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 22 | 19, 20, 21 | syl2an 596 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 23 | 2, 12 | tgpinv 24093 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
| 24 | 23 | ad2antrr 726 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
| 25 | 18, 22, 24 | cnmpt11f 23672 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽)) |
| 26 | 16, 25 | eqeltrd 2841 | . . 3 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 27 | 26 | adantrl 716 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| 28 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 29 | elznn0nn 12627 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
| 31 | 7, 27, 30 | mpjaodan 961 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 -cneg 11493 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 Basecbs 17247 TopOpenctopn 17466 invgcminusg 18952 .gcmg 19085 TopOnctopon 22916 Cn ccn 23232 TopMndctmd 24078 TopGrpctgp 24079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 df-0g 17486 df-topgen 17488 df-plusf 18652 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mulg 19086 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-tx 23570 df-tmd 24080 df-tgp 24081 |
| This theorem is referenced by: tgpmulg2 24102 |
| Copyright terms: Public domain | W3C validator |