![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpmulg | Structured version Visualization version GIF version |
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgpmulg.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpmulg.t | ⊢ · = (.g‘𝐺) |
tgpmulg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
tgpmulg | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgptmd 22291 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
2 | tgpmulg.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgpmulg.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
4 | tgpmulg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 2, 3, 4 | tmdmulg 22304 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
6 | 1, 5 | sylan 575 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
7 | 6 | adantlr 705 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
8 | simpllr 766 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) | |
9 | 8 | zcnd 11835 | . . . . . . . 8 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℂ) |
10 | 9 | negnegd 10725 | . . . . . . 7 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → --𝑁 = 𝑁) |
11 | 10 | oveq1d 6937 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥)) |
12 | eqid 2778 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 4, 3, 12 | mulgnegnn 17938 | . . . . . . 7 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
14 | 13 | adantll 704 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
15 | 11, 14 | eqtr3d 2816 | . . . . 5 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
16 | 15 | mpteq2dva 4979 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥)))) |
17 | 2, 4 | tgptopon 22294 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
18 | 17 | ad2antrr 716 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵)) |
19 | 1 | adantr 474 | . . . . . 6 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd) |
20 | nnnn0 11650 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0) | |
21 | 2, 3, 4 | tmdmulg 22304 | . . . . . 6 ⊢ ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
22 | 19, 20, 21 | syl2an 589 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
23 | 2, 12 | tgpinv 22297 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
24 | 23 | ad2antrr 716 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
25 | 18, 22, 24 | cnmpt11f 21876 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽)) |
26 | 16, 25 | eqeltrd 2859 | . . 3 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
27 | 26 | adantrl 706 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
28 | simpr 479 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
29 | elznn0nn 11742 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
30 | 28, 29 | sylib 210 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
31 | 7, 27, 30 | mpjaodan 944 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 836 = wceq 1601 ∈ wcel 2107 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 -cneg 10607 ℕcn 11374 ℕ0cn0 11642 ℤcz 11728 Basecbs 16255 TopOpenctopn 16468 invgcminusg 17810 .gcmg 17927 TopOnctopon 21122 Cn ccn 21436 TopMndctmd 22282 TopGrpctgp 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-seq 13120 df-0g 16488 df-topgen 16490 df-plusf 17627 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mulg 17928 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cn 21439 df-cnp 21440 df-tx 21774 df-tmd 22284 df-tgp 22285 |
This theorem is referenced by: tgpmulg2 22306 |
Copyright terms: Public domain | W3C validator |