MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpmulg Structured version   Visualization version   GIF version

Theorem tgpmulg 23987
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tgpmulg.j 𝐽 = (TopOpen‘𝐺)
tgpmulg.t · = (.g𝐺)
tgpmulg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tgpmulg ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑥, ·   𝑥,𝑁

Proof of Theorem tgpmulg
StepHypRef Expression
1 tgptmd 23973 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
2 tgpmulg.j . . . . 5 𝐽 = (TopOpen‘𝐺)
3 tgpmulg.t . . . . 5 · = (.g𝐺)
4 tgpmulg.b . . . . 5 𝐵 = (Base‘𝐺)
52, 3, 4tmdmulg 23986 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
61, 5sylan 580 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
76adantlr 715 . 2 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
8 simpllr 775 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℤ)
98zcnd 12646 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → 𝑁 ∈ ℂ)
109negnegd 11531 . . . . . . 7 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → --𝑁 = 𝑁)
1110oveq1d 7405 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥))
12 eqid 2730 . . . . . . . 8 (invg𝐺) = (invg𝐺)
134, 3, 12mulgnegnn 19023 . . . . . . 7 ((-𝑁 ∈ ℕ ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1413adantll 714 . . . . . 6 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (--𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1511, 14eqtr3d 2767 . . . . 5 ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥𝐵) → (𝑁 · 𝑥) = ((invg𝐺)‘(-𝑁 · 𝑥)))
1615mpteq2dva 5203 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) = (𝑥𝐵 ↦ ((invg𝐺)‘(-𝑁 · 𝑥))))
172, 4tgptopon 23976 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
1817ad2antrr 726 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵))
191adantr 480 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd)
20 nnnn0 12456 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
212, 3, 4tmdmulg 23986 . . . . . 6 ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2219, 20, 21syl2an 596 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
232, 12tgpinv 23979 . . . . . 6 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽 Cn 𝐽))
2423ad2antrr 726 . . . . 5 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
2518, 22, 24cnmpt11f 23558 . . . 4 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ ((invg𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽))
2616, 25eqeltrd 2829 . . 3 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
2726adantrl 716 . 2 (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
28 simpr 484 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
29 elznn0nn 12550 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
3028, 29sylib 218 . 2 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
317, 27, 30mpjaodan 960 1 ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  -cneg 11413  cn 12193  0cn0 12449  cz 12536  Basecbs 17186  TopOpenctopn 17391  invgcminusg 18873  .gcmg 19006  TopOnctopon 22804   Cn ccn 23118  TopMndctmd 23964  TopGrpctgp 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-0g 17411  df-topgen 17413  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mulg 19007  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-tx 23456  df-tmd 23966  df-tgp 23967
This theorem is referenced by:  tgpmulg2  23988
  Copyright terms: Public domain W3C validator