![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpmulg | Structured version Visualization version GIF version |
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgpmulg.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpmulg.t | ⊢ · = (.g‘𝐺) |
tgpmulg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
tgpmulg | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgptmd 24027 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
2 | tgpmulg.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgpmulg.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
4 | tgpmulg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 2, 3, 4 | tmdmulg 24040 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
6 | 1, 5 | sylan 578 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
7 | 6 | adantlr 713 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
8 | simpllr 774 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) | |
9 | 8 | zcnd 12700 | . . . . . . . 8 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℂ) |
10 | 9 | negnegd 11594 | . . . . . . 7 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → --𝑁 = 𝑁) |
11 | 10 | oveq1d 7434 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥)) |
12 | eqid 2725 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 4, 3, 12 | mulgnegnn 19047 | . . . . . . 7 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
14 | 13 | adantll 712 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
15 | 11, 14 | eqtr3d 2767 | . . . . 5 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
16 | 15 | mpteq2dva 5249 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥)))) |
17 | 2, 4 | tgptopon 24030 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
18 | 17 | ad2antrr 724 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵)) |
19 | 1 | adantr 479 | . . . . . 6 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd) |
20 | nnnn0 12512 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0) | |
21 | 2, 3, 4 | tmdmulg 24040 | . . . . . 6 ⊢ ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
22 | 19, 20, 21 | syl2an 594 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
23 | 2, 12 | tgpinv 24033 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
24 | 23 | ad2antrr 724 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
25 | 18, 22, 24 | cnmpt11f 23612 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽)) |
26 | 16, 25 | eqeltrd 2825 | . . 3 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
27 | 26 | adantrl 714 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
28 | simpr 483 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
29 | elznn0nn 12605 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
30 | 28, 29 | sylib 217 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
31 | 7, 27, 30 | mpjaodan 956 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 -cneg 11477 ℕcn 12245 ℕ0cn0 12505 ℤcz 12591 Basecbs 17183 TopOpenctopn 17406 invgcminusg 18899 .gcmg 19031 TopOnctopon 22856 Cn ccn 23172 TopMndctmd 24018 TopGrpctgp 24019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-seq 14003 df-0g 17426 df-topgen 17428 df-plusf 18602 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mulg 19032 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cn 23175 df-cnp 23176 df-tx 23510 df-tmd 24020 df-tgp 24021 |
This theorem is referenced by: tgpmulg2 24042 |
Copyright terms: Public domain | W3C validator |