| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpsubcn | Structured version Visualization version GIF version | ||
| Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| tgpsubcn.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpsubcn.3 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| tgpsubcn | ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2731 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 4 | tgpsubcn.3 | . . 3 ⊢ − = (-g‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpsubfval 18896 | . 2 ⊢ − = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
| 6 | tgpsubcn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 7 | tgptmd 23994 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 8 | 6, 1 | tgptopon 23997 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 9 | 8, 8 | cnmpt1st 23583 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 10 | 8, 8 | cnmpt2nd 23584 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 11 | 6, 3 | tgpinv 24000 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
| 12 | 8, 8, 10, 11 | cnmpt21f 23587 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 13 | 6, 2, 7, 8, 8, 9, 12 | cnmpt2plusg 24003 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 14 | 5, 13 | eqeltrid 2835 | 1 ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 +gcplusg 17161 TopOpenctopn 17325 invgcminusg 18847 -gcsg 18848 Cn ccn 23139 ×t ctx 23475 TopGrpctgp 23986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17347 df-plusf 18547 df-sbg 18851 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cn 23142 df-tx 23477 df-tmd 23987 df-tgp 23988 |
| This theorem is referenced by: istgp2 24006 clssubg 24024 clsnsg 24025 tgphaus 24032 tgpt0 24034 qustgplem 24036 |
| Copyright terms: Public domain | W3C validator |