MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpsubcn Structured version   Visualization version   GIF version

Theorem tgpsubcn 23593
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpenβ€˜πΊ)
tgpsubcn.3 βˆ’ = (-gβ€˜πΊ)
Assertion
Ref Expression
tgpsubcn (𝐺 ∈ TopGrp β†’ βˆ’ ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))

Proof of Theorem tgpsubcn
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
2 eqid 2732 . . 3 (+gβ€˜πΊ) = (+gβ€˜πΊ)
3 eqid 2732 . . 3 (invgβ€˜πΊ) = (invgβ€˜πΊ)
4 tgpsubcn.3 . . 3 βˆ’ = (-gβ€˜πΊ)
51, 2, 3, 4grpsubfval 18867 . 2 βˆ’ = (π‘₯ ∈ (Baseβ€˜πΊ), 𝑦 ∈ (Baseβ€˜πΊ) ↦ (π‘₯(+gβ€˜πΊ)((invgβ€˜πΊ)β€˜π‘¦)))
6 tgpsubcn.2 . . 3 𝐽 = (TopOpenβ€˜πΊ)
7 tgptmd 23582 . . 3 (𝐺 ∈ TopGrp β†’ 𝐺 ∈ TopMnd)
86, 1tgptopon 23585 . . 3 (𝐺 ∈ TopGrp β†’ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)))
98, 8cnmpt1st 23171 . . 3 (𝐺 ∈ TopGrp β†’ (π‘₯ ∈ (Baseβ€˜πΊ), 𝑦 ∈ (Baseβ€˜πΊ) ↦ π‘₯) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
108, 8cnmpt2nd 23172 . . . 4 (𝐺 ∈ TopGrp β†’ (π‘₯ ∈ (Baseβ€˜πΊ), 𝑦 ∈ (Baseβ€˜πΊ) ↦ 𝑦) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
116, 3tgpinv 23588 . . . 4 (𝐺 ∈ TopGrp β†’ (invgβ€˜πΊ) ∈ (𝐽 Cn 𝐽))
128, 8, 10, 11cnmpt21f 23175 . . 3 (𝐺 ∈ TopGrp β†’ (π‘₯ ∈ (Baseβ€˜πΊ), 𝑦 ∈ (Baseβ€˜πΊ) ↦ ((invgβ€˜πΊ)β€˜π‘¦)) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
136, 2, 7, 8, 8, 9, 12cnmpt2plusg 23591 . 2 (𝐺 ∈ TopGrp β†’ (π‘₯ ∈ (Baseβ€˜πΊ), 𝑦 ∈ (Baseβ€˜πΊ) ↦ (π‘₯(+gβ€˜πΊ)((invgβ€˜πΊ)β€˜π‘¦))) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
145, 13eqeltrid 2837 1 (𝐺 ∈ TopGrp β†’ βˆ’ ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  Basecbs 17143  +gcplusg 17196  TopOpenctopn 17366  invgcminusg 18819  -gcsg 18820   Cn ccn 22727   Γ—t ctx 23063  TopGrpctgp 23574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-topgen 17388  df-plusf 18559  df-sbg 18823  df-top 22395  df-topon 22412  df-topsp 22434  df-bases 22448  df-cn 22730  df-tx 23065  df-tmd 23575  df-tgp 23576
This theorem is referenced by:  istgp2  23594  clssubg  23612  clsnsg  23613  tgphaus  23620  tgpt0  23622  qustgplem  23624
  Copyright terms: Public domain W3C validator