MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpsubcn Structured version   Visualization version   GIF version

Theorem tgpsubcn 22628
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
tgpsubcn (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem tgpsubcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2821 . . 3 (+g𝐺) = (+g𝐺)
3 eqid 2821 . . 3 (invg𝐺) = (invg𝐺)
4 tgpsubcn.3 . . 3 = (-g𝐺)
51, 2, 3, 4grpsubfval 18087 . 2 = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
6 tgpsubcn.2 . . 3 𝐽 = (TopOpen‘𝐺)
7 tgptmd 22617 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
86, 1tgptopon 22620 . . 3 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
98, 8cnmpt1st 22206 . . 3 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
108, 8cnmpt2nd 22207 . . . 4 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116, 3tgpinv 22623 . . . 4 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽 Cn 𝐽))
128, 8, 10, 11cnmpt21f 22210 . . 3 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
136, 2, 7, 8, 8, 9, 12cnmpt2plusg 22626 . 2 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
145, 13eqeltrid 2917 1 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  cfv 6349  (class class class)co 7145  cmpo 7147  Basecbs 16473  +gcplusg 16555  TopOpenctopn 16685  invgcminusg 18044  -gcsg 18045   Cn ccn 21762   ×t ctx 22098  TopGrpctgp 22609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7680  df-2nd 7681  df-map 8398  df-topgen 16707  df-plusf 17841  df-sbg 18048  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cn 21765  df-tx 22100  df-tmd 22610  df-tgp 22611
This theorem is referenced by:  istgp2  22629  clssubg  22646  clsnsg  22647  tgphaus  22654  tgpt0  22656  qustgplem  22658
  Copyright terms: Public domain W3C validator