MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpsubcn Structured version   Visualization version   GIF version

Theorem tgpsubcn 24044
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
tgpsubcn (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem tgpsubcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2734 . . 3 (+g𝐺) = (+g𝐺)
3 eqid 2734 . . 3 (invg𝐺) = (invg𝐺)
4 tgpsubcn.3 . . 3 = (-g𝐺)
51, 2, 3, 4grpsubfval 18970 . 2 = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
6 tgpsubcn.2 . . 3 𝐽 = (TopOpen‘𝐺)
7 tgptmd 24033 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
86, 1tgptopon 24036 . . 3 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
98, 8cnmpt1st 23622 . . 3 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
108, 8cnmpt2nd 23623 . . . 4 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116, 3tgpinv 24039 . . . 4 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽 Cn 𝐽))
128, 8, 10, 11cnmpt21f 23626 . . 3 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
136, 2, 7, 8, 8, 9, 12cnmpt2plusg 24042 . 2 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
145, 13eqeltrid 2837 1 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  cmpo 7415  Basecbs 17229  +gcplusg 17273  TopOpenctopn 17437  invgcminusg 18921  -gcsg 18922   Cn ccn 23178   ×t ctx 23514  TopGrpctgp 24025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-map 8850  df-topgen 17459  df-plusf 18621  df-sbg 18925  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cn 23181  df-tx 23516  df-tmd 24026  df-tgp 24027
This theorem is referenced by:  istgp2  24045  clssubg  24063  clsnsg  24064  tgphaus  24071  tgpt0  24073  qustgplem  24075
  Copyright terms: Public domain W3C validator