![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpsubcn | Structured version Visualization version GIF version |
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
tgpsubcn.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpsubcn.3 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
tgpsubcn | ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2826 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2826 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | tgpsubcn.3 | . . 3 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubfval 17819 | . 2 ⊢ − = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
6 | tgpsubcn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
7 | tgptmd 22254 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
8 | 6, 1 | tgptopon 22257 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
9 | 8, 8 | cnmpt1st 21843 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
10 | 8, 8 | cnmpt2nd 21844 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
11 | 6, 3 | tgpinv 22260 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
12 | 8, 8, 10, 11 | cnmpt21f 21847 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
13 | 6, 2, 7, 8, 8, 9, 12 | cnmpt2plusg 22263 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
14 | 5, 13 | syl5eqel 2911 | 1 ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ‘cfv 6124 (class class class)co 6906 ↦ cmpt2 6908 Basecbs 16223 +gcplusg 16306 TopOpenctopn 16436 invgcminusg 17778 -gcsg 17779 Cn ccn 21400 ×t ctx 21735 TopGrpctgp 22246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-1st 7429 df-2nd 7430 df-map 8125 df-topgen 16458 df-plusf 17595 df-sbg 17782 df-top 21070 df-topon 21087 df-topsp 21109 df-bases 21122 df-cn 21403 df-tx 21737 df-tmd 22247 df-tgp 22248 |
This theorem is referenced by: istgp2 22266 clssubg 22283 clsnsg 22284 tgphaus 22291 tgpt0 22293 qustgplem 22295 |
Copyright terms: Public domain | W3C validator |