MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpsubcn Structured version   Visualization version   GIF version

Theorem tgpsubcn 24010
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
tgpsubcn (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem tgpsubcn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
3 eqid 2729 . . 3 (invg𝐺) = (invg𝐺)
4 tgpsubcn.3 . . 3 = (-g𝐺)
51, 2, 3, 4grpsubfval 18897 . 2 = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦)))
6 tgpsubcn.2 . . 3 𝐽 = (TopOpen‘𝐺)
7 tgptmd 23999 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
86, 1tgptopon 24002 . . 3 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
98, 8cnmpt1st 23588 . . 3 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
108, 8cnmpt2nd 23589 . . . 4 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116, 3tgpinv 24005 . . . 4 (𝐺 ∈ TopGrp → (invg𝐺) ∈ (𝐽 Cn 𝐽))
128, 8, 10, 11cnmpt21f 23592 . . 3 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
136, 2, 7, 8, 8, 9, 12cnmpt2plusg 24008 . 2 (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
145, 13eqeltrid 2832 1 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  +gcplusg 17196  TopOpenctopn 17360  invgcminusg 18848  -gcsg 18849   Cn ccn 23144   ×t ctx 23480  TopGrpctgp 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17382  df-plusf 18548  df-sbg 18852  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-tx 23482  df-tmd 23992  df-tgp 23993
This theorem is referenced by:  istgp2  24011  clssubg  24029  clsnsg  24030  tgphaus  24037  tgpt0  24039  qustgplem  24041
  Copyright terms: Public domain W3C validator