![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpsubcn | Structured version Visualization version GIF version |
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
tgpsubcn.2 | β’ π½ = (TopOpenβπΊ) |
tgpsubcn.3 | β’ β = (-gβπΊ) |
Ref | Expression |
---|---|
tgpsubcn | β’ (πΊ β TopGrp β β β ((π½ Γt π½) Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (BaseβπΊ) = (BaseβπΊ) | |
2 | eqid 2732 | . . 3 β’ (+gβπΊ) = (+gβπΊ) | |
3 | eqid 2732 | . . 3 β’ (invgβπΊ) = (invgβπΊ) | |
4 | tgpsubcn.3 | . . 3 β’ β = (-gβπΊ) | |
5 | 1, 2, 3, 4 | grpsubfval 18867 | . 2 β’ β = (π₯ β (BaseβπΊ), π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)((invgβπΊ)βπ¦))) |
6 | tgpsubcn.2 | . . 3 β’ π½ = (TopOpenβπΊ) | |
7 | tgptmd 23582 | . . 3 β’ (πΊ β TopGrp β πΊ β TopMnd) | |
8 | 6, 1 | tgptopon 23585 | . . 3 β’ (πΊ β TopGrp β π½ β (TopOnβ(BaseβπΊ))) |
9 | 8, 8 | cnmpt1st 23171 | . . 3 β’ (πΊ β TopGrp β (π₯ β (BaseβπΊ), π¦ β (BaseβπΊ) β¦ π₯) β ((π½ Γt π½) Cn π½)) |
10 | 8, 8 | cnmpt2nd 23172 | . . . 4 β’ (πΊ β TopGrp β (π₯ β (BaseβπΊ), π¦ β (BaseβπΊ) β¦ π¦) β ((π½ Γt π½) Cn π½)) |
11 | 6, 3 | tgpinv 23588 | . . . 4 β’ (πΊ β TopGrp β (invgβπΊ) β (π½ Cn π½)) |
12 | 8, 8, 10, 11 | cnmpt21f 23175 | . . 3 β’ (πΊ β TopGrp β (π₯ β (BaseβπΊ), π¦ β (BaseβπΊ) β¦ ((invgβπΊ)βπ¦)) β ((π½ Γt π½) Cn π½)) |
13 | 6, 2, 7, 8, 8, 9, 12 | cnmpt2plusg 23591 | . 2 β’ (πΊ β TopGrp β (π₯ β (BaseβπΊ), π¦ β (BaseβπΊ) β¦ (π₯(+gβπΊ)((invgβπΊ)βπ¦))) β ((π½ Γt π½) Cn π½)) |
14 | 5, 13 | eqeltrid 2837 | 1 β’ (πΊ β TopGrp β β β ((π½ Γt π½) Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 β cmpo 7410 Basecbs 17143 +gcplusg 17196 TopOpenctopn 17366 invgcminusg 18819 -gcsg 18820 Cn ccn 22727 Γt ctx 23063 TopGrpctgp 23574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 df-topgen 17388 df-plusf 18559 df-sbg 18823 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cn 22730 df-tx 23065 df-tmd 23575 df-tgp 23576 |
This theorem is referenced by: istgp2 23594 clssubg 23612 clsnsg 23613 tgphaus 23620 tgpt0 23622 qustgplem 23624 |
Copyright terms: Public domain | W3C validator |