| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpsubcn | Structured version Visualization version GIF version | ||
| Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| tgpsubcn.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpsubcn.3 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| tgpsubcn | ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2729 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 4 | tgpsubcn.3 | . . 3 ⊢ − = (-g‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpsubfval 18862 | . 2 ⊢ − = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
| 6 | tgpsubcn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 7 | tgptmd 23964 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 8 | 6, 1 | tgptopon 23967 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 9 | 8, 8 | cnmpt1st 23553 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 10 | 8, 8 | cnmpt2nd 23554 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 11 | 6, 3 | tgpinv 23970 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
| 12 | 8, 8, 10, 11 | cnmpt21f 23557 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 13 | 6, 2, 7, 8, 8, 9, 12 | cnmpt2plusg 23973 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 14 | 5, 13 | eqeltrid 2832 | 1 ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Basecbs 17120 +gcplusg 17161 TopOpenctopn 17325 invgcminusg 18813 -gcsg 18814 Cn ccn 23109 ×t ctx 23445 TopGrpctgp 23956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-topgen 17347 df-plusf 18513 df-sbg 18817 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cn 23112 df-tx 23447 df-tmd 23957 df-tgp 23958 |
| This theorem is referenced by: istgp2 23976 clssubg 23994 clsnsg 23995 tgphaus 24002 tgpt0 24004 qustgplem 24006 |
| Copyright terms: Public domain | W3C validator |