Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgpsubcn | Structured version Visualization version GIF version |
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
tgpsubcn.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpsubcn.3 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
tgpsubcn | ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
4 | tgpsubcn.3 | . . 3 ⊢ − = (-g‘𝐺) | |
5 | 1, 2, 3, 4 | grpsubfval 18623 | . 2 ⊢ − = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
6 | tgpsubcn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
7 | tgptmd 23230 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
8 | 6, 1 | tgptopon 23233 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
9 | 8, 8 | cnmpt1st 22819 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
10 | 8, 8 | cnmpt2nd 22820 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
11 | 6, 3 | tgpinv 23236 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
12 | 8, 8, 10, 11 | cnmpt21f 22823 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
13 | 6, 2, 7, 8, 8, 9, 12 | cnmpt2plusg 23239 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
14 | 5, 13 | eqeltrid 2843 | 1 ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Basecbs 16912 +gcplusg 16962 TopOpenctopn 17132 invgcminusg 18578 -gcsg 18579 Cn ccn 22375 ×t ctx 22711 TopGrpctgp 23222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-topgen 17154 df-plusf 18325 df-sbg 18582 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cn 22378 df-tx 22713 df-tmd 23223 df-tgp 23224 |
This theorem is referenced by: istgp2 23242 clssubg 23260 clsnsg 23261 tgphaus 23268 tgpt0 23270 qustgplem 23272 |
Copyright terms: Public domain | W3C validator |