| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpsubcn | Structured version Visualization version GIF version | ||
| Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| tgpsubcn.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpsubcn.3 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| tgpsubcn | ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2734 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2734 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 4 | tgpsubcn.3 | . . 3 ⊢ − = (-g‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpsubfval 18970 | . 2 ⊢ − = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
| 6 | tgpsubcn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 7 | tgptmd 24033 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
| 8 | 6, 1 | tgptopon 24036 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 9 | 8, 8 | cnmpt1st 23622 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 10 | 8, 8 | cnmpt2nd 23623 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 11 | 6, 3 | tgpinv 24039 | . . . 4 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
| 12 | 8, 8, 10, 11 | cnmpt21f 23626 | . . 3 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 13 | 6, 2, 7, 8, 8, 9, 12 | cnmpt2plusg 24042 | . 2 ⊢ (𝐺 ∈ TopGrp → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)((invg‘𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 14 | 5, 13 | eqeltrid 2837 | 1 ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 Basecbs 17229 +gcplusg 17273 TopOpenctopn 17437 invgcminusg 18921 -gcsg 18922 Cn ccn 23178 ×t ctx 23514 TopGrpctgp 24025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fo 6547 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-map 8850 df-topgen 17459 df-plusf 18621 df-sbg 18925 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cn 23181 df-tx 23516 df-tmd 24026 df-tgp 24027 |
| This theorem is referenced by: istgp2 24045 clssubg 24063 clsnsg 24064 tgphaus 24071 tgpt0 24073 qustgplem 24075 |
| Copyright terms: Public domain | W3C validator |