| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvhmeo | Structured version Visualization version GIF version | ||
| Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpinv.5 | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvhmeo | ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 2 | tgpinv.5 | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 3 | 1, 2 | tgpinv 24001 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
| 4 | tgpgrp 23994 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 5 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 6 | 5, 2 | grpinvcnv 18921 | . . . 4 ⊢ (𝐺 ∈ Grp → ◡𝐼 = 𝐼) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → ◡𝐼 = 𝐼) |
| 8 | 7, 3 | eqeltrd 2833 | . 2 ⊢ (𝐺 ∈ TopGrp → ◡𝐼 ∈ (𝐽 Cn 𝐽)) |
| 9 | ishmeo 23675 | . 2 ⊢ (𝐼 ∈ (𝐽Homeo𝐽) ↔ (𝐼 ∈ (𝐽 Cn 𝐽) ∧ ◡𝐼 ∈ (𝐽 Cn 𝐽))) | |
| 10 | 3, 8, 9 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ◡ccnv 5618 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 TopOpenctopn 17327 Grpcgrp 18848 invgcminusg 18849 Cn ccn 23140 Homeochmeo 23669 TopGrpctgp 23987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-top 22810 df-topon 22827 df-cn 23143 df-hmeo 23671 df-tgp 23989 |
| This theorem is referenced by: tgpconncomp 24029 tsmsxplem1 24069 |
| Copyright terms: Public domain | W3C validator |