![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvhmeo | Structured version Visualization version GIF version |
Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | β’ π½ = (TopOpenβπΊ) |
tgpinv.5 | β’ πΌ = (invgβπΊ) |
Ref | Expression |
---|---|
grpinvhmeo | β’ (πΊ β TopGrp β πΌ β (π½Homeoπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.j | . . 3 β’ π½ = (TopOpenβπΊ) | |
2 | tgpinv.5 | . . 3 β’ πΌ = (invgβπΊ) | |
3 | 1, 2 | tgpinv 23589 | . 2 β’ (πΊ β TopGrp β πΌ β (π½ Cn π½)) |
4 | tgpgrp 23582 | . . . 4 β’ (πΊ β TopGrp β πΊ β Grp) | |
5 | eqid 2733 | . . . . 5 β’ (BaseβπΊ) = (BaseβπΊ) | |
6 | 5, 2 | grpinvcnv 18891 | . . . 4 β’ (πΊ β Grp β β‘πΌ = πΌ) |
7 | 4, 6 | syl 17 | . . 3 β’ (πΊ β TopGrp β β‘πΌ = πΌ) |
8 | 7, 3 | eqeltrd 2834 | . 2 β’ (πΊ β TopGrp β β‘πΌ β (π½ Cn π½)) |
9 | ishmeo 23263 | . 2 β’ (πΌ β (π½Homeoπ½) β (πΌ β (π½ Cn π½) β§ β‘πΌ β (π½ Cn π½))) | |
10 | 3, 8, 9 | sylanbrc 584 | 1 β’ (πΊ β TopGrp β πΌ β (π½Homeoπ½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β‘ccnv 5676 βcfv 6544 (class class class)co 7409 Basecbs 17144 TopOpenctopn 17367 Grpcgrp 18819 invgcminusg 18820 Cn ccn 22728 Homeochmeo 23257 TopGrpctgp 23575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-top 22396 df-topon 22413 df-cn 22731 df-hmeo 23259 df-tgp 23577 |
This theorem is referenced by: tgpconncomp 23617 tsmsxplem1 23657 |
Copyright terms: Public domain | W3C validator |