MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvhmeo Structured version   Visualization version   GIF version

Theorem grpinvhmeo 24115
Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpinv.5 𝐼 = (invg𝐺)
Assertion
Ref Expression
grpinvhmeo (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽))

Proof of Theorem grpinvhmeo
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
2 tgpinv.5 . . 3 𝐼 = (invg𝐺)
31, 2tgpinv 24114 . 2 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
4 tgpgrp 24107 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
5 eqid 2740 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
65, 2grpinvcnv 19046 . . . 4 (𝐺 ∈ Grp → 𝐼 = 𝐼)
74, 6syl 17 . . 3 (𝐺 ∈ TopGrp → 𝐼 = 𝐼)
87, 3eqeltrd 2844 . 2 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
9 ishmeo 23788 . 2 (𝐼 ∈ (𝐽Homeo𝐽) ↔ (𝐼 ∈ (𝐽 Cn 𝐽) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
103, 8, 9sylanbrc 582 1 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  ccnv 5699  cfv 6573  (class class class)co 7448  Basecbs 17258  TopOpenctopn 17481  Grpcgrp 18973  invgcminusg 18974   Cn ccn 23253  Homeochmeo 23782  TopGrpctgp 24100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-top 22921  df-topon 22938  df-cn 23256  df-hmeo 23784  df-tgp 24102
This theorem is referenced by:  tgpconncomp  24142  tsmsxplem1  24182
  Copyright terms: Public domain W3C validator