MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvhmeo Structured version   Visualization version   GIF version

Theorem grpinvhmeo 24024
Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpinv.5 𝐼 = (invg𝐺)
Assertion
Ref Expression
grpinvhmeo (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽))

Proof of Theorem grpinvhmeo
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
2 tgpinv.5 . . 3 𝐼 = (invg𝐺)
31, 2tgpinv 24023 . 2 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
4 tgpgrp 24016 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
5 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
65, 2grpinvcnv 18989 . . . 4 (𝐺 ∈ Grp → 𝐼 = 𝐼)
74, 6syl 17 . . 3 (𝐺 ∈ TopGrp → 𝐼 = 𝐼)
87, 3eqeltrd 2834 . 2 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
9 ishmeo 23697 . 2 (𝐼 ∈ (𝐽Homeo𝐽) ↔ (𝐼 ∈ (𝐽 Cn 𝐽) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
103, 8, 9sylanbrc 583 1 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  ccnv 5653  cfv 6531  (class class class)co 7405  Basecbs 17228  TopOpenctopn 17435  Grpcgrp 18916  invgcminusg 18917   Cn ccn 23162  Homeochmeo 23691  TopGrpctgp 24009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-top 22832  df-topon 22849  df-cn 23165  df-hmeo 23693  df-tgp 24011
This theorem is referenced by:  tgpconncomp  24051  tsmsxplem1  24091
  Copyright terms: Public domain W3C validator