| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvhmeo | Structured version Visualization version GIF version | ||
| Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpinv.5 | ⊢ 𝐼 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvhmeo | ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 2 | tgpinv.5 | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
| 3 | 1, 2 | tgpinv 23998 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
| 4 | tgpgrp 23991 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 6 | 5, 2 | grpinvcnv 18916 | . . . 4 ⊢ (𝐺 ∈ Grp → ◡𝐼 = 𝐼) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → ◡𝐼 = 𝐼) |
| 8 | 7, 3 | eqeltrd 2831 | . 2 ⊢ (𝐺 ∈ TopGrp → ◡𝐼 ∈ (𝐽 Cn 𝐽)) |
| 9 | ishmeo 23672 | . 2 ⊢ (𝐼 ∈ (𝐽Homeo𝐽) ↔ (𝐼 ∈ (𝐽 Cn 𝐽) ∧ ◡𝐼 ∈ (𝐽 Cn 𝐽))) | |
| 10 | 3, 8, 9 | sylanbrc 583 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ◡ccnv 5615 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 TopOpenctopn 17322 Grpcgrp 18843 invgcminusg 18844 Cn ccn 23137 Homeochmeo 23666 TopGrpctgp 23984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-top 22807 df-topon 22824 df-cn 23140 df-hmeo 23668 df-tgp 23986 |
| This theorem is referenced by: tgpconncomp 24026 tsmsxplem1 24066 |
| Copyright terms: Public domain | W3C validator |