Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpinvhmeo | Structured version Visualization version GIF version |
Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpinv.5 | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvhmeo | ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
2 | tgpinv.5 | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
3 | 1, 2 | tgpinv 22982 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) |
4 | tgpgrp 22975 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | |
5 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | 5, 2 | grpinvcnv 18431 | . . . 4 ⊢ (𝐺 ∈ Grp → ◡𝐼 = 𝐼) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝐺 ∈ TopGrp → ◡𝐼 = 𝐼) |
8 | 7, 3 | eqeltrd 2838 | . 2 ⊢ (𝐺 ∈ TopGrp → ◡𝐼 ∈ (𝐽 Cn 𝐽)) |
9 | ishmeo 22656 | . 2 ⊢ (𝐼 ∈ (𝐽Homeo𝐽) ↔ (𝐼 ∈ (𝐽 Cn 𝐽) ∧ ◡𝐼 ∈ (𝐽 Cn 𝐽))) | |
10 | 3, 8, 9 | sylanbrc 586 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ◡ccnv 5550 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 TopOpenctopn 16926 Grpcgrp 18365 invgcminusg 18366 Cn ccn 22121 Homeochmeo 22650 TopGrpctgp 22968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-top 21791 df-topon 21808 df-cn 22124 df-hmeo 22652 df-tgp 22970 |
This theorem is referenced by: tgpconncomp 23010 tsmsxplem1 23050 |
Copyright terms: Public domain | W3C validator |