MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvhmeo Structured version   Visualization version   GIF version

Theorem grpinvhmeo 24002
Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgpinv.5 𝐼 = (invg𝐺)
Assertion
Ref Expression
grpinvhmeo (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽))

Proof of Theorem grpinvhmeo
StepHypRef Expression
1 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
2 tgpinv.5 . . 3 𝐼 = (invg𝐺)
31, 2tgpinv 24001 . 2 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
4 tgpgrp 23994 . . . 4 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
5 eqid 2733 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
65, 2grpinvcnv 18921 . . . 4 (𝐺 ∈ Grp → 𝐼 = 𝐼)
74, 6syl 17 . . 3 (𝐺 ∈ TopGrp → 𝐼 = 𝐼)
87, 3eqeltrd 2833 . 2 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽))
9 ishmeo 23675 . 2 (𝐼 ∈ (𝐽Homeo𝐽) ↔ (𝐼 ∈ (𝐽 Cn 𝐽) ∧ 𝐼 ∈ (𝐽 Cn 𝐽)))
103, 8, 9sylanbrc 583 1 (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  ccnv 5618  cfv 6486  (class class class)co 7352  Basecbs 17122  TopOpenctopn 17327  Grpcgrp 18848  invgcminusg 18849   Cn ccn 23140  Homeochmeo 23669  TopGrpctgp 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-top 22810  df-topon 22827  df-cn 23143  df-hmeo 23671  df-tgp 23989
This theorem is referenced by:  tgpconncomp  24029  tsmsxplem1  24069
  Copyright terms: Public domain W3C validator