MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgtgp Structured version   Visualization version   GIF version

Theorem subgtgp 23990
Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgtgp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgtgp ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)

Proof of Theorem subgtgp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4 𝐻 = (𝐺s 𝑆)
21subggrp 19008 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 481 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 tgptmd 23964 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
5 subgsubm 19027 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺))
61submtmd 23989 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)
74, 5, 6syl2an 596 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopMnd)
81subgbas 19009 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
98adantl 481 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
109mpteq1d 5182 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
11 eqid 2729 . . . . . . . 8 (invg𝐺) = (invg𝐺)
12 eqid 2729 . . . . . . . 8 (invg𝐻) = (invg𝐻)
131, 11, 12subginv 19012 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1413adantll 714 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1514mpteq2dva 5185 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) = (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)))
16 eqid 2729 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
1716, 12grpinvf 18865 . . . . . . 7 (𝐻 ∈ Grp → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
183, 17syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
1918feqmptd 6891 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
2010, 15, 193eqtr4rd 2775 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)))
21 eqid 2729 . . . . 5 ((TopOpen‘𝐺) ↾t 𝑆) = ((TopOpen‘𝐺) ↾t 𝑆)
22 eqid 2729 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
23 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2422, 23tgptopon 23967 . . . . . 6 (𝐺 ∈ TopGrp → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2524adantr 480 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2623subgss 19006 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2726adantl 481 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
28 tgpgrp 23963 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2928adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3023, 11grpinvf 18865 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3129, 30syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3231feqmptd 6891 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
3322, 11tgpinv 23970 . . . . . . 7 (𝐺 ∈ TopGrp → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3433adantr 480 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3532, 34eqeltrrd 2829 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3621, 25, 27, 35cnmpt1res 23561 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
3720, 36eqeltrd 2828 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
3818frnd 6660 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ (Base‘𝐻))
3938, 9sseqtrrd 3973 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ 𝑆)
40 cnrest2 23171 . . . 4 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ ran (invg𝐻) ⊆ 𝑆𝑆 ⊆ (Base‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4125, 39, 27, 40syl3anc 1373 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4237, 41mpbid 232 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆)))
431, 22resstopn 23071 . . 3 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
4443, 12istgp 23962 . 2 (𝐻 ∈ TopGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ TopMnd ∧ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
453, 7, 42, 44syl3anbrc 1344 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  t crest 17324  TopOpenctopn 17325  SubMndcsubmnd 18656  Grpcgrp 18812  invgcminusg 18813  SubGrpcsubg 18999  TopOnctopon 22795   Cn ccn 23109  TopMndctmd 23955  TopGrpctgp 23956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-rest 17326  df-topn 17327  df-0g 17345  df-topgen 17347  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-subg 19002  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-tx 23447  df-tmd 23957  df-tgp 23958
This theorem is referenced by:  qqhcn  33974
  Copyright terms: Public domain W3C validator