MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgtgp Structured version   Visualization version   GIF version

Theorem subgtgp 24060
Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgtgp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgtgp ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)

Proof of Theorem subgtgp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4 𝐻 = (𝐺s 𝑆)
21subggrp 19117 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 481 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 tgptmd 24034 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
5 subgsubm 19136 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺))
61submtmd 24059 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)
74, 5, 6syl2an 596 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopMnd)
81subgbas 19118 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
98adantl 481 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
109mpteq1d 5217 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
11 eqid 2734 . . . . . . . 8 (invg𝐺) = (invg𝐺)
12 eqid 2734 . . . . . . . 8 (invg𝐻) = (invg𝐻)
131, 11, 12subginv 19121 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1413adantll 714 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1514mpteq2dva 5222 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) = (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)))
16 eqid 2734 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
1716, 12grpinvf 18974 . . . . . . 7 (𝐻 ∈ Grp → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
183, 17syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
1918feqmptd 6957 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
2010, 15, 193eqtr4rd 2780 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)))
21 eqid 2734 . . . . 5 ((TopOpen‘𝐺) ↾t 𝑆) = ((TopOpen‘𝐺) ↾t 𝑆)
22 eqid 2734 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
23 eqid 2734 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2422, 23tgptopon 24037 . . . . . 6 (𝐺 ∈ TopGrp → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2524adantr 480 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2623subgss 19115 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2726adantl 481 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
28 tgpgrp 24033 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2928adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3023, 11grpinvf 18974 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3129, 30syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3231feqmptd 6957 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
3322, 11tgpinv 24040 . . . . . . 7 (𝐺 ∈ TopGrp → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3433adantr 480 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3532, 34eqeltrrd 2834 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3621, 25, 27, 35cnmpt1res 23631 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
3720, 36eqeltrd 2833 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
3818frnd 6724 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ (Base‘𝐻))
3938, 9sseqtrrd 4001 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ 𝑆)
40 cnrest2 23241 . . . 4 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ ran (invg𝐻) ⊆ 𝑆𝑆 ⊆ (Base‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4125, 39, 27, 40syl3anc 1372 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4237, 41mpbid 232 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆)))
431, 22resstopn 23141 . . 3 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
4443, 12istgp 24032 . 2 (𝐻 ∈ TopGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ TopMnd ∧ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
453, 7, 42, 44syl3anbrc 1343 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wss 3931  cmpt 5205  ran crn 5666  wf 6537  cfv 6541  (class class class)co 7413  Basecbs 17230  s cress 17253  t crest 17437  TopOpenctopn 17438  SubMndcsubmnd 18765  Grpcgrp 18921  invgcminusg 18922  SubGrpcsubg 19108  TopOnctopon 22865   Cn ccn 23179  TopMndctmd 24025  TopGrpctgp 24026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-tset 17293  df-rest 17439  df-topn 17440  df-0g 17458  df-topgen 17460  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-subg 19111  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cn 23182  df-tx 23517  df-tmd 24027  df-tgp 24028
This theorem is referenced by:  qqhcn  33967
  Copyright terms: Public domain W3C validator