MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgtgp Structured version   Visualization version   GIF version

Theorem subgtgp 23999
Description: A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgtgp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgtgp ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)

Proof of Theorem subgtgp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4 𝐻 = (𝐺s 𝑆)
21subggrp 19068 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 481 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 tgptmd 23973 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
5 subgsubm 19087 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺))
61submtmd 23998 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)
74, 5, 6syl2an 596 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopMnd)
81subgbas 19069 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
98adantl 481 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
109mpteq1d 5200 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
11 eqid 2730 . . . . . . . 8 (invg𝐺) = (invg𝐺)
12 eqid 2730 . . . . . . . 8 (invg𝐻) = (invg𝐻)
131, 11, 12subginv 19072 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1413adantll 714 . . . . . 6 (((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆) → ((invg𝐺)‘𝑥) = ((invg𝐻)‘𝑥))
1514mpteq2dva 5203 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) = (𝑥𝑆 ↦ ((invg𝐻)‘𝑥)))
16 eqid 2730 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
1716, 12grpinvf 18925 . . . . . . 7 (𝐻 ∈ Grp → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
183, 17syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻):(Base‘𝐻)⟶(Base‘𝐻))
1918feqmptd 6932 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥 ∈ (Base‘𝐻) ↦ ((invg𝐻)‘𝑥)))
2010, 15, 193eqtr4rd 2776 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) = (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)))
21 eqid 2730 . . . . 5 ((TopOpen‘𝐺) ↾t 𝑆) = ((TopOpen‘𝐺) ↾t 𝑆)
22 eqid 2730 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
23 eqid 2730 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2422, 23tgptopon 23976 . . . . . 6 (𝐺 ∈ TopGrp → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2524adantr 480 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2623subgss 19066 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2726adantl 481 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
28 tgpgrp 23972 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2928adantr 480 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
3023, 11grpinvf 18925 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3129, 30syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
3231feqmptd 6932 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
3322, 11tgpinv 23979 . . . . . . 7 (𝐺 ∈ TopGrp → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3433adantr 480 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3532, 34eqeltrrd 2830 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
3621, 25, 27, 35cnmpt1res 23570 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥𝑆 ↦ ((invg𝐺)‘𝑥)) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
3720, 36eqeltrd 2829 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)))
3818frnd 6699 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ (Base‘𝐻))
3938, 9sseqtrrd 3987 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ran (invg𝐻) ⊆ 𝑆)
40 cnrest2 23180 . . . 4 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ ran (invg𝐻) ⊆ 𝑆𝑆 ⊆ (Base‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4125, 39, 27, 40syl3anc 1373 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn (TopOpen‘𝐺)) ↔ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4237, 41mpbid 232 . 2 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆)))
431, 22resstopn 23080 . . 3 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
4443, 12istgp 23971 . 2 (𝐻 ∈ TopGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ TopMnd ∧ (invg𝐻) ∈ (((TopOpen‘𝐺) ↾t 𝑆) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
453, 7, 42, 44syl3anbrc 1344 1 ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  cmpt 5191  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  t crest 17390  TopOpenctopn 17391  SubMndcsubmnd 18716  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059  TopOnctopon 22804   Cn ccn 23118  TopMndctmd 23964  TopGrpctgp 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-rest 17392  df-topn 17393  df-0g 17411  df-topgen 17413  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-tx 23456  df-tmd 23966  df-tgp 23967
This theorem is referenced by:  qqhcn  33988
  Copyright terms: Public domain W3C validator