| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tleile | Structured version Visualization version GIF version | ||
| Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| tleile.b | ⊢ 𝐵 = (Base‘𝐾) |
| tleile.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| tleile | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 3 | tleile.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | tleile.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 5 | 3, 4 | istos 18324 | . . . 4 ⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
| 6 | 5 | simprbi 496 | . . 3 ⊢ (𝐾 ∈ Toset → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
| 8 | breq1 5096 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
| 9 | breq2 5097 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋)) | |
| 10 | 8, 9 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ (𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋))) |
| 11 | breq2 5097 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
| 12 | breq1 5096 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
| 13 | 11, 12 | orbi12d 918 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋))) |
| 14 | 10, 13 | rspc2va 3585 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
| 15 | 1, 2, 7, 14 | syl21anc 837 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 Posetcpo 18215 Tosetctos 18322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-toset 18323 |
| This theorem is referenced by: tltnle 18328 odutos 32956 trleile 32959 toslat 49106 |
| Copyright terms: Public domain | W3C validator |