![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tleile | Structured version Visualization version GIF version |
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
tleile.b | ⊢ 𝐵 = (Base‘𝐾) |
tleile.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
tleile | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
2 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
3 | tleile.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | tleile.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
5 | 3, 4 | istos 18488 | . . . 4 ⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
6 | 5 | simprbi 496 | . . 3 ⊢ (𝐾 ∈ Toset → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
7 | 6 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
8 | breq1 5169 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
9 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋)) | |
10 | 8, 9 | orbi12d 917 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ (𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋))) |
11 | breq2 5170 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
12 | breq1 5169 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
13 | 11, 12 | orbi12d 917 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋))) |
14 | 10, 13 | rspc2va 3647 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
15 | 1, 2, 7, 14 | syl21anc 837 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 Tosetctos 18486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-toset 18487 |
This theorem is referenced by: tltnle 18492 odutos 32941 trleile 32944 toslat 48654 |
Copyright terms: Public domain | W3C validator |