MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tleile Structured version   Visualization version   GIF version

Theorem tleile 18139
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐵 = (Base‘𝐾)
tleile.l = (le‘𝐾)
Assertion
Ref Expression
tleile ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))

Proof of Theorem tleile
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2 simp3 1137 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3 tleile.b . . . . 5 𝐵 = (Base‘𝐾)
4 tleile.l . . . . 5 = (le‘𝐾)
53, 4istos 18136 . . . 4 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
65simprbi 497 . . 3 (𝐾 ∈ Toset → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))
763ad2ant1 1132 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))
8 breq1 5077 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 breq2 5078 . . . 4 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
108, 9orbi12d 916 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑋 𝑦𝑦 𝑋)))
11 breq2 5078 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
12 breq1 5077 . . . 4 (𝑦 = 𝑌 → (𝑦 𝑋𝑌 𝑋))
1311, 12orbi12d 916 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑋) ↔ (𝑋 𝑌𝑌 𝑋)))
1410, 13rspc2va 3571 . 2 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) → (𝑋 𝑌𝑌 𝑋))
151, 2, 7, 14syl21anc 835 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  Tosetctos 18134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-toset 18135
This theorem is referenced by:  tltnle  18140  odutos  31246  trleile  31249  toslat  46268
  Copyright terms: Public domain W3C validator