MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tleile Structured version   Visualization version   GIF version

Theorem tleile 18378
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐡 = (Baseβ€˜πΎ)
tleile.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
tleile ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ∨ π‘Œ ≀ 𝑋))

Proof of Theorem tleile
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
2 simp3 1138 . 2 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ∈ 𝐡)
3 tleile.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
4 tleile.l . . . . 5 ≀ = (leβ€˜πΎ)
53, 4istos 18375 . . . 4 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)))
65simprbi 497 . . 3 (𝐾 ∈ Toset β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))
763ad2ant1 1133 . 2 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯))
8 breq1 5151 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ 𝑦 ↔ 𝑋 ≀ 𝑦))
9 breq2 5152 . . . 4 (π‘₯ = 𝑋 β†’ (𝑦 ≀ π‘₯ ↔ 𝑦 ≀ 𝑋))
108, 9orbi12d 917 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯) ↔ (𝑋 ≀ 𝑦 ∨ 𝑦 ≀ 𝑋)))
11 breq2 5152 . . . 4 (𝑦 = π‘Œ β†’ (𝑋 ≀ 𝑦 ↔ 𝑋 ≀ π‘Œ))
12 breq1 5151 . . . 4 (𝑦 = π‘Œ β†’ (𝑦 ≀ 𝑋 ↔ π‘Œ ≀ 𝑋))
1311, 12orbi12d 917 . . 3 (𝑦 = π‘Œ β†’ ((𝑋 ≀ 𝑦 ∨ 𝑦 ≀ 𝑋) ↔ (𝑋 ≀ π‘Œ ∨ π‘Œ ≀ 𝑋)))
1410, 13rspc2va 3623 . 2 (((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ∨ 𝑦 ≀ π‘₯)) β†’ (𝑋 ≀ π‘Œ ∨ π‘Œ ≀ 𝑋))
151, 2, 7, 14syl21anc 836 1 ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ∨ π‘Œ ≀ 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  β€˜cfv 6543  Basecbs 17148  lecple 17208  Posetcpo 18264  Tosetctos 18373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-toset 18374
This theorem is referenced by:  tltnle  18379  odutos  32393  trleile  32396  toslat  47695
  Copyright terms: Public domain W3C validator