MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tleile Structured version   Visualization version   GIF version

Theorem tleile 18327
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐵 = (Base‘𝐾)
tleile.l = (le‘𝐾)
Assertion
Ref Expression
tleile ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))

Proof of Theorem tleile
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2 simp3 1138 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3 tleile.b . . . . 5 𝐵 = (Base‘𝐾)
4 tleile.l . . . . 5 = (le‘𝐾)
53, 4istos 18324 . . . 4 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
65simprbi 496 . . 3 (𝐾 ∈ Toset → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))
763ad2ant1 1133 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))
8 breq1 5096 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 breq2 5097 . . . 4 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
108, 9orbi12d 918 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑋 𝑦𝑦 𝑋)))
11 breq2 5097 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
12 breq1 5096 . . . 4 (𝑦 = 𝑌 → (𝑦 𝑋𝑌 𝑋))
1311, 12orbi12d 918 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑋) ↔ (𝑋 𝑌𝑌 𝑋)))
1410, 13rspc2va 3585 . 2 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) → (𝑋 𝑌𝑌 𝑋))
151, 2, 7, 14syl21anc 837 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093  cfv 6486  Basecbs 17122  lecple 17170  Posetcpo 18215  Tosetctos 18322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-toset 18323
This theorem is referenced by:  tltnle  18328  odutos  32956  trleile  32959  toslat  49106
  Copyright terms: Public domain W3C validator