![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tleile | Structured version Visualization version GIF version |
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
tleile.b | ⊢ 𝐵 = (Base‘𝐾) |
tleile.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
tleile | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
2 | simp3 1135 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
3 | tleile.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | tleile.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
5 | 3, 4 | istos 18413 | . . . 4 ⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
6 | 5 | simprbi 495 | . . 3 ⊢ (𝐾 ∈ Toset → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
7 | 6 | 3ad2ant1 1130 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
8 | breq1 5152 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
9 | breq2 5153 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋)) | |
10 | 8, 9 | orbi12d 916 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ (𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋))) |
11 | breq2 5153 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
12 | breq1 5152 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
13 | 11, 12 | orbi12d 916 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋))) |
14 | 10, 13 | rspc2va 3618 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
15 | 1, 2, 7, 14 | syl21anc 836 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 class class class wbr 5149 ‘cfv 6549 Basecbs 17183 lecple 17243 Posetcpo 18302 Tosetctos 18411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-toset 18412 |
This theorem is referenced by: tltnle 18417 odutos 32784 trleile 32787 toslat 48176 |
Copyright terms: Public domain | W3C validator |